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Preface

The rapidly evolving information technologies have benefited society in many ways.
These technologies range from ubiquitous communication to the rise of Artificial Intel-
ligence (AI) tools. Indeed, these technologies have become essential for individuals,
communities, businesses, and society in general. However, the same technologies present
risks originating from malicious actors. There are two facets to such risk (1) the tech-
nologies are themselves vulnerable to attacks, and (2) sometimes the technologies enable
attackers to conduct attacks with ease. Addressing such risk is a significant challenge.

First, the notion of perfect (or nearly perfect) security has proven to be unachievable
in the real world. Indeed, the attack surface is so large in real-world systems that securing
all parts is nearly impossible. Further, clever adversaries employ sophisticated schemes
to exploit weaknesses in any cyber-system. This motivates the notion of minimizing risk
rather than eliminating risk. Game theory is an apt tool for such analysis.

Modern game theory provides a framework to reason about an adversary (and a
defender) in terms of cost, observability, and other strategic considerations. It allows
reasoning from a control, mechanism design, incentive analysis, economics, or AI per-
spective. Recent advances in AI and machine learning have also led to interesting work
at the intersection of AI and game theory, with various works focusing on game models
of security of AI and various AI tools used in strategic reasoning.

Since its first edition in 2010, GameSec has attracted novel, high-quality theoreti-
cal and practical contributions. This year also continued the tradition. Over the years,
GameSec has expanded its focus from traditional game theory to modern game theory
with influences from various research communities including AI, control, economics,
behavioral science, andmore. The conference program included 15 full and two extended
abstract papers as well as one presentation-only work. Reviews were conducted on 27
submitted papers, of which two were invited papers. Reviews were single-blind, and
submissions received two reviews on average. The selected papers were geographically
diverse, with many international and transcontinental authorship teams.

GameSec 2024 featured two keynote speakers who explored future research direc-
tions at the intersection of Game theory/AI and cybersecurity. David Nicol from the Uni-
versity of Illinois at Urbana-Champaign addressed emerging cybersecurity challenges
and discussed how new AI tools and theoretical frameworks can help mitigate these
threats. Cleotilde Gonzalez from Carnegie Mellon University highlighted the pivotal
role of human behavior in cybersecurity, emphasizing the need to model and understand
human vulnerabilities. These vulnerabilities are crucial to securing increasingly complex
networks and systems, as they introduce new layers of risk that expand the attack surface.
Addressing these open challenges requires innovative theoretical modeling and design
methods, and calls for the active engagement of the next generation of researchers.

The themes of the conference this year were broad and encompassed work in the
areas of systems security, security economics, equilibrium and control computation, net-
work and privacy, adversarial machine learning, and cyber-physical systems. Each area
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took on critical challenges including the detection/mitigation problems associated with
several specific attacks on cyber systems, exploring the economics of cyber extortion and
bitcoin mining and the impact of generative AI on content creation, fundamental results
in multi-player game equilibrium computation as well as in robust control and equi-
librium computation in a game model of logistics, novel usages of strategic deception,
games played on networks and game analysis of anonymous messaging, adversarial
machine learning focusing on aspects of membership inference attacks, and work in
cyber-physical systems focusing on anomaly detection and advanced persistent threats.

Overall, the conference presentedmanynovel contributions and directly impacted the
consideration of security in a wide range of settings, including generative AI, adversarial
machine learning, cyber extortion, automated pen testing and defense, bitcoin, advanced
persistent threats (APT), cyber-physical systems, deception, and logistics.

Wewould like to thank Springer for its continued support of theGameSec conference
and for publishing the proceedings as part of their Lecture Notes in Computer Science
(LNCS) series. We hope that not only security researchers but also practitioners and
policy makers will benefit from this edition.

October 2024 Arunesh Sinha
Jie Fu

Quanyan Zhu
Tao Zhang
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Learning Provably Trustworthy Control in Nonlinear
Dynamical Systems

Junlin Wu and Yevgeniy Vorobeychik

Washington University in St. Louis, St. Louis, MO, 63130 USA

Learning a trustworthy controller for autonomous systems is a central issue in modern
autonomy. Here, we overview our recent work that aims to develop methods for learning
provably trustworthy controllers from two perspectives: stability and safety.

Learning Provably Stable Controllers [11]: Traditionally, guaranteeing stability in
autonomous systems involves finding a Lyapunov function and an associated control
policy. While this approach is well-established for linear systems, it presents significant
challenges for nonlinear systems [7, 8]. Existing methods often use neural networks to
represent Lyapunov functions but typically focus on continuous-time systems or spe-
cific classes of nonlinear dynamics [1, 4, 5, 13]. We developed a novel approach for
learning neural Lyapunov control that is applicable to a broad class of discrete-time
nonlinear systems. Our approach incorporates three innovative components: 1) a novel
mixed-integer linear programming approach that verifies discrete-time Lyapunov sta-
bility conditions by leveraging their specific structure; 2) a new method for computing
verified sublevel sets to enhance the precision of stability assessments; and 3) a heuristic
gradient-based method for quickly identifying counterexamples, significantly speeding
up training. Our experiments demonstrate that our approach significantly outperforms
state-of-the-art baselines.

Learning Provably Safe Controllers [12]: Next, we delve into the problem of learning
provably safe controllers for nonlinear neural network dynamics [3, 6, 10]. We devel-
oped a novel approach for learning controllers that can be verified to be safe in the
sense of finite-horizon reachability proofs, while maximizing overall performance. Our
approach builds on safe reinforcement learning [2, 9] and consists of three key parts.
The first is a novel curriculum learning scheme that iteratively increases the verified safe
horizon. Second, we leverage the iterative nature of gradient-based learning for incre-
mental verification, reusing information from prior verification runs. Third, we learn
multiple verified initialstate-dependent controllers, an idea that is especially valuable
for more complex domains where learning a single universal verified safe controller
is extremely challenging. Our experiments on five safe control problems demonstrate
that our trained controllers can achieve verified safety over horizons that are as much
as an order of magnitude longer than state-of-the-art baselines, while maintaining high
reward, as well as a perfect safety record over entire episodes.

Keywords: Trustworthy AI · Learning Provably Safe Control
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Bayesian Defense Against Membership Inference Attacks
in Sharing Genomic Summary Statistics

Tao Zhang and Yevgeniy Vorobeychik

Washington University in St. Louis, St. Louis, MO, 63130 USA
{taoz,yvorobeychik}@wustl.edu

The rapid advancement in genomic sequencing and the widespread availability of online
genomic data-sharing services have led to increased accessibility of large genomic
datasets. These datasets are essential for distinguishing clinically significant genomic
variations. However, sharing even summary statistics of these data poses substantial
privacy risks, particularly due to membership inference attacks (MIAs), which can re-
identify individuals within these datasets. Existing defenses against MIAs, such as like-
lihood ratio test (LRT) based methods, often assume non-adaptive attacks, which limits
their effectiveness. We propose a Bayesian game-theoretic framework that models the
interaction between an attacker, who aims to perform MIA, and a defender, who seeks
to protect the membership privacy of the dataset. Our first contribution introduces a
bounded-rational Bayesian attacker model, which we show to bemore powerful than tra-
ditional LRT-based models. This attacker induces greater privacy loss for the defender,
who is modeled as a von Neumann-Morgenstern (vNM) decision-maker. We demon-
strate that this holds true even when the attacker has a non-informative prior, making the
defense against such Bayesian attacks particularly challenging.We analytically compare
theBayesian attackswith arbitrary subjective priors to theNeyman-Pearson optimal LRT
attacks under the Gaussian mechanisms. Our results show that under certain conditions,
Bayesian attacks can lead to a higher worst-case privacy loss for the defender than LRT
attacks, thus emphasizing the need for stronger defense mechanisms.

To address this challenge, we propose amethod for approximating Bayes-Nash equi-
libria of the game, where the defender’s and attacker’s strategies are represented by deep
neural networks. The defender’s strategy is modeled as a neural network generator that
perturbs summary statistics, while the attacker’s strategy is modeled as a neural network
classifier that performs membership inference. Our experiments on genomic datasets
demonstrate that our game-theoretic framework significantly outperforms state-of-the-
art methods [1, 2, 3, 4] in both attacking and defending, providing a more robust solution
for privacy-preserving genomic data sharing. We offer a novel and robust framework for
optimizing the privacy-utility tradeoff in genomic data sharing, paving the way for more
secure and effective methods of data sharing in sensitive domains.

Keywords: Privacy-Utility Tradeoff · Genomic Data Sharing ·
Membership Inference Attacks · Bayesian Game Theory · Privacy · Deep
Learning
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Intrusion Tolerance as a Two-Level Game

Kim Hammar(B) and Rolf Stadler

KTH Royal Institute of Technology, Stockholm, Sweden
{kimham,stadler}@kth.se

Abstract. We formulate intrusion tolerance for a system with service
replicas as a two-level game: a local game models intrusion recovery and
a global game models replication control. For both games, we prove the
existence of equilibria and show that the best responses have a threshold
structure, which enables efficient computation of strategies. State-of-the-
art intrusion-tolerant systems can be understood as instantiations of our
game with heuristic control strategies. Our analysis shows the conditions
under which such heuristics can be significantly improved through game-
theoretic reasoning. This reasoning allows us to derive the optimal con-
trol strategies and evaluate them against 10 types of network intrusions
on a testbed. The testbed results demonstrate that our game-theoretic
strategies can significantly improve service availability and reduce the
operational cost of state-of-the-art intrusion-tolerant systems. In addi-
tion, our game strategies can ensure any chosen level of service avail-
ability and time-to-recovery, bridging the gap between theoretical and
operational performance.

Keywords: Cybersecurity · network security · intrusion tolerance ·
bft · game theory · optimal control · reliability theory

1 Introduction

As our reliance on online services grows, there is increasing demand for reliable
systems that provide service without disruption. Traditionally, the main causes of
disruption in networked systems have been hardware failure and power outages.
While tolerance against these types of failures is important, a growing source of
disruptions is network intrusion.

We call a system intrusion-tolerant if it provides correct service while intru-
sions occur [6]. The common approach to building an intrusion-tolerant system
is to replicate the system across a set of nodes, which allows compromised and
crashed nodes to be substituted by healthy nodes. This approach to intrusion
tolerance includes three main building blocks: (i) a protocol for service replica-
tion that tolerates a subset of compromised and crashed nodes; (ii) a replication
strategy that adjusts the replication factor; and (iii) a recovery strategy that
determines when to recover potentially compromised nodes [6].

Replication protocols that satisfy the condition in (i) are called Byzantine
fault-tolerant (bft) and have been studied extensively (see survey [7]). Few prior
works have studied (ii) and (iii). Current intrusion-tolerant systems typically
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Sinha et al. (Eds.): GameSec 2024, LNCS 14908, pp. 3–23, 2025.
https://doi.org/10.1007/978-3-031-74835-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-74835-6_1&domain=pdf
http://orcid.org/0000-0003-1773-8354
http://orcid.org/0000-0001-6039-8493
https://doi.org/10.1007/978-3-031-74835-6_1
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use a fixed replication factor and rely on inefficient recovery strategies, such as
periodic recovery, heuristic rule-based recovery, or manual recovery by system
administrators [7].

In this paper, we address the above limitations and present a game-theoretic
model that allows us to characterize optimal recovery and replication strategies
for intrusion-tolerant systems. (This paper builds on our earlier control-theoretic
work on intrusion tolerance [15].) Our model assumes a set of nodes that col-
lectively offer a service to a client population (see Fig. 1.a). This service is also
accessible to an attacker who attempts to compromise nodes. Each node is seg-
mented into two domains: an application domain, which runs a service replica,
and a privileged domain, which runs security and control functions (see Fig. 1.b).
The replicas are coordinated through a replication protocol that guarantees cor-
rect service if no more than f nodes are compromised or crashed simultaneously.
To prevent the number of compromised and crashed nodes from exceeding f ,
the system employs automatic control techniques to determine when to recover
service replicas and when to add or evict nodes.

We formulate the scenario described above as a game with two levels: local
and global. The local game involves node controllers that independently per-
form intrusion recovery, and the global game involves a system controller that
manages the replication factor (see Fig. 1.a). Both games are modeled as stochas-
tic zero-sum games and incorporate safety constraints. We prove the existence
of constrained perfect Bayesian and Markov equilibria in the local and global
games, respectively. We also derive a threshold structure of the best responses,
which enables efficient computation of strategies. To assess the performance of
the equilibrium strategies, we evaluate them against 10 types of network intru-
sions on a testbed. The results show that the equilibrium strategies can signif-
icantly improve service availability and reduce the operational cost of state-of-
the-art intrusion-tolerant systems. Moreover, the equilibrium strategies provide
guarantees that ensure a chosen level of service availability and time-to-recovery.

Fig. 1. Node controllers with strategies π1, . . . , πNt compute belief states b1, . . . , bNt

and make local recovery decisions; a global system controller with strategy π receives
belief states and manages the replication factor Nt.
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Our contributions can be summarized as follows:

1. We present a novel formulation of intrusion tolerance as a two-level game.
The local game models intrusion recovery, and the global game models repli-
cation control. We derive control strategies that are optimal against a dynamic
attacker and for which we provide theoretical guarantees.

2. We prove the existence of equilibria and that the best responses have a thresh-
old structure. Based on these insights, we design efficient algorithms for com-
puting the best responses.

3. We evaluate the equilibrium strategies in an emulation environment where
we run 10 types of network intrusions. The results show that the equilibrium
strategies can improve service availability and reduce the operational cost of
state-of-the-art intrusion-tolerant systems.

2 Background on Intrusion-Tolerant Systems

The common approach to building an intrusion-tolerant service is based on
redundancy, whereby the service is provided by a set of replicas. Through such
redundancy, compromised and crashed replicas can be substituted by healthy
replicas as long as they can coordinate their service responses. This coordina-
tion problem is known as the consensus problem, which can be solved under
synchrony and failure assumptions [5]. The main synchrony options are (i) the
synchronous model, which mandates an upper bound on the communication
delay between nodes; (ii) the partially synchronous model, which warrants an
upper bound but allows for periods of instability where the bound is violated;
and (iii) the asynchronous model, where no bound exists [5]. Similarly, the main
failure options are (i) the crash-stop failure model, where nodes fail by crash-
ing; (ii) the Byzantine failure model, where nodes fail arbitrarily; and (iii) the
hybrid failure model, where nodes fail arbitrarily but are equipped with trusted
components that fail by crashing [24].

Theorem 1 (Solvability of the consensus problem).

1. Consensus is not solvable in the asynchronous model.
2. Consensus is solvable in the partially synchronous model with N nodes and

at most N−1
2 crash-stop failures, N−1

3 Byzantine failures, and N−1
2 hybrid

failures.
3. Consensus is solvable in the synchronous model with N nodes and at most

N − 1 crash-stop failures, N−1
2 Byzantine failures, and N−1

2 hybrid failures.

Theorem 1 summarizes several decades of research; hence, the proofs are
scattered across the literature. A reference to a proof of each statement can
be found in the supplementary material [16, App. M]. This theorem provides
the basis for designing an intrusion-tolerant system and indicates the number
of nodes required to tolerate f compromised nodes. However, the theorem does
not provide guidance on the likelihood that the threshold f will be exceeded.
Quantifying this likelihood is the objective of reliability theory.
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The reliability of a system is defined as the probability that the system per-
forms its task under the operating conditions encountered [4]. If T (F) is a random
variable representing the time to failure (e.g., compromise), then the reliability
function can be defined as R(t) � P[T (F) > t] and the mean time to failure
(mttf) is E[T (F)]. In the context of intrusion tolerance, we also consider the
metrics average time-to-recovery T (R), average availability T (A), and frequency
of recovery F (R).

3 System Model

We consider a (distributed) system with Nt ≥ 2f + 1 nodes connected through
an authenticated network. (In an authenticated network, nodes can verify each
other’s digital signatures [5, §2.4.6].) Each node is segmented into two domains:
an application domain, which runs a service replica, and a privileged domain,
which runs security and control functions (see Fig. 1.b). The replicas are coordi-
nated through a reconfigurable consensus protocol (e.g., reconfigurable minbft
[24, §4.2]). (A reconfigurable consensus protocol allows dynamic addition and
removal of nodes from the system [7, §8.6].) This protocol guarantees correct
service if no more than f nodes are compromised or crashed simultaneously.

Definition 1 (Correct service). The system provides correct service if the
healthy replicas satisfy the following properties:

Each request is eventually executed. (Liveness)
Each executed request was sent by a client. (Validity)
Each replica executes the same request sequence. (Safety)

To maintain correct service when intrusions occur, the system can take three
types of control actions: (i) recover a compromised service replica, e.g., by replac-
ing the virtual machine where the replica executes; (ii) evict a crashed node from
the system; and (iii) add a new node. The recover action is taken by a node
controller on the local level, and the system controller takes the evict and add
actions on the global level (see Fig. 1.a).

Proposition 1. The system provides correct service if

An attacker can not forge digital signatures. (P1.A)
An attacker can not access the privileged domains. (P1.B)
Network links are authenticated and reliable [5, p. 42]. (P1.C)
At most k nodes recover simultaneously. (P1.D)
At most f nodes are compromised or crashed simultaneously. (P1.E)
Nt ≥ 2f + 1 + k. (P1.F)
The system is partially synchronous [5, §2.5.3]. (P1.G)
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Proof. (P1.A)–(P1.C) imply the hybrid failure model [24]. (P1.D)–(P1.F) state
that at least f + 1 + k nodes are healthy. These properties together with the
tolerance threshold f = Nt−1−k

2 of the consensus protocol (e.g., minbft [24,
§4.2]) imply (Safety) (Theorem 1, [24, Thms. 1–2]). Next, it follows from (P1.G)
that the healthy nodes will eventually agree on the response to any service
request, which allows to circumvent flp [9, Thm. 1] and achieve (Liveness).
Finally, (Validity) is ensured by the consensus protocol. ��
Assumptions (P1.A), (P1.C), (P1.D), (P1.G) imply that the system uses stan-
dard cryptographic mechanisms and network equipment. Similarly, (P1.E)–
(P1.F) can always be met by tuning f and Nt. The strongest assumption is
(P1.B), which implies that the controllers are securely separated from the ser-
vice replicas. This separation can be realized in several ways. One option is
to use a secure coprocessor to execute the privileged domain (e.g., ibm 4758).
Another option is to implement the privileged domain using dedicated hardware
modules, such as a smart card or an fpga [7]. A third option, which does not
require special hardware, is to use a security kernel to run the privileged domain
[24]. A fourth option, used in [7], is to separate the application domain from the
privileged domain using a secure virtualization layer.

Proposition 1 implies that, to guarantee correct service (Definition 1), the
controllers must ensure (in expectation) that: a) the number of compromised and
crashed nodes is at most f , which is achieved by recovery; and b) the number
of nodes satisfies Nt ≥ 2f +1+ k, which is achieved by replacing crashed nodes.
In the following section, we model the problem of meeting these two constraints
while minimizing operational cost as a game with a local and a global level.
On the local level, node controllers minimize cost while meeting a), and on the
global level, the system controller minimizes cost while meeting b). At the same
time, an attacker aims to maximize the cost of the system.

Remark 1 (Extension of Proposition 1). By appropriate use of cryptographic
methods, the system can provide confidentiality in addition to (Safety),
(Liveness), and (Validity). See the supplementary material [16, App. N].

4 Modeling Intrusion Tolerance as a Two-Level Game

Our game-theoretic model is based on the following assumptions.

Assumption 1. The probability that the system controller crashes is negligible.

Assumption 2. Compromise and crash events are statistically independent
across nodes.

Assumption 3. (P1.D) is enforced by the system implementation.

Assumption 4. The attacker has access to the controllers’ observations.
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Assumption 1 can be satisfied by deploying the system controller on a crash-
tolerant system, e.g., a raft-based system. Assumption 2 means that we can
analyze and solve each local game independently. This assumption can be satis-
fied in practice by distributing the nodes geographically and employing software
diversification [12]. Assumption 3 can be met through proper implementation
design. Lastly, Assumption 4 holds for insider attacks and reflects that it is
generally not known what information is available to the attacker.

Notation. Random variables are denoted by upper-case letters (e.g., X) and
their values by lower-case (e.g., x). P is a probability measure. (Since we focus on
countable sample spaces, the construction of the underlying probability space is
standard.) The expectation of φ with respect to X is written as EX [φ]. (As the
sample spaces are countable, no question of the existence of EX [φ] will arise.)
When φ includes many random variables that depend on π, we simply write
Eπ[φ]. x ∼ φ means that x is sampled from φ. We use P[x] as a shorthand for
P[X = x]. Calligraphy letters (e.g., V) represent sets. The set of probability
distributions over V is written as Δ(V). 1φ is the indicator function. A table with
notations is available in the supplementary material [16, Table. 1].

4.1 The Local Intrusion Recovery Game

The local game involves two players: a node controller that aims to minimize
operational cost by performing intrusion recovery and an attacker that aims to
maximize that cost. The attacker can perform two actions to achieve its goal:
(i) compromise the node’s service replica; and (ii) trigger excess recoveries by
the deliberate generation of false intrusion alarms.

Let Nt � {1, 2, . . . , Nt} be the set of nodes and π
(C)
i,t the corresponding behav-

ior control strategy at time t [20, Def. 5]. Controller i takes one of two actions
a
(C)
i,t : (R)ecover or (W)ait. Similarly, the attacker follows a behavior strategy π

(A)
i,t

and takes one of two actions a
(A)
i,t : (A)ttack or (F)alse alarm.

Node i has state si,t ∈ SN with three values: ∅ if it is crashed, C if it is
compromised, and H if it is healthy (see Fig. 2.a). The evolution of si,t can be
written as si,t+1 ∼ fN,i(· | si,t, a

(C)
i,t , a

(A)
i,t ), where fN,i is defined as

fN,i(∅ | ∅, ·, ·) � 1 (1a)

fN,i(∅ | H, ·, ·) � fN,i(∅ | C, ·, ·) � pC,i (1b)

fN,i(H | H,W,A) � (1 − pA,i)(1 − pC,i) (1c)

fN,i(H | H, ·,F) � fN,i(H | C,R, ·) � fN,i(C | C,W, ·) � (1 − pC,i) (1d)

fN,i(C | H, ·,A) � (1 − pC,i)pA,i. (1e)

pA,i ∈ (0, 1) is the probability that an attack on node i is successful and pC,i ∈
(0, 1) is the probability that the node crashes during the time interval [t, t + 1].
These parameters can be set based on domain knowledge or be obtained through
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system measurements. In fact, companies such as Google, Meta, and ibm have
documented procedures for estimating such parameters, see e.g., [10].

(1a)–(1b) capture the transitions to the crashed state ∅, which is absorbing.
(A crashed node can be restarted and appears as a new node in our model.)
Next, (1c)–(1d) define the transitions to the healthy state H after the controller
takes action R. Lastly, (1e) captures the transition to the compromised state
C when an intrusion occurs. All other transitions have probability 0. It follows
from (1) that the number of time-steps until a node fails (crash or compromise)
is geometrically distributed, see Fig. 2.b.

Fig. 2. a) disks represent states, arrows represent state transitions, labels indicate
probabilities and conditions for state transition, self-transitions are not shown; b) the
probability that a node is compromised (C) or crashed (∅) by time-step t if no recoveries
occur; the curves relate to values of min[pA,i + pC,i, 1].

Observability. The attacker has complete observability in the sense that it
knows the state si,t, the controller’s action a

(C)
i,t , and the controller’s observa-

tion. In contrast, the controller has a restricted view. It only has access to an
observation oi,t ∈ O, which is based on the number of ids alerts received during
the time interval [t − 1, t] (O is finite). Consequently, the information feedback
for the controller and the attacker at time t are

i(C)
i,t � (oi,t, ) and i(A)

i,t � (si,t, a
(C)
i,t−1, oi,t), where oi,t ∼ zi(· | a

(A)
i,t−1). (2)

Remark 2. While we focus on the ids alert metric in this paper, alternative
sources for metrics can be used. A comparison between different metrics is avail-
able in the supplementary material [16, App. L].
Both the controller and the attacker have perfect recall [20, Def. 7], which means
that they remember their respective history h(j)

i,t � (bi,1, (a
(j)
i,l−1, i

(j)
i,l )l=2,...,t),

where j ∈ {C,A}. Based on this history, the controller computes the belief state

bi,t(si) � P[Si,t = si|h(C)
i,t ]

(a)
=

∑

a
(A)
i,t−1

zi(oi,t|a(A)
i,t−1)P[si|a(C)

i,t−1,h
(C)
i,t−1, π

(A)
i,t ]

P[oi,t|a(C)
i,t−1,h

(C)
i,t−1, π

(A)
i,t ]

(3)

(b)
=

∑
si,t−1

∑

a
(A)
i,t−1

zi(oi,t|a(A)
i,t−1)π

(A)
i,t (a

(A)
i,t−1)bi,t−1(si,t−1)fN,i(si|si,t−1, a

(C)
i,t−1, a

(A)
i,t−1)

∑
ŝi,s

′
i

∑

a
(A)
i,t−1

zi(oi,t|a(A)
i,t−1)π

(A)
i,t (a

(A)
i,t−1)fN,i(s

′
i|ŝi, a(C)

i,t−1, a
(A)
i,t−1)bi,t−1(ŝi)

,
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where (a) is an expansion of the conditional probability using Bayes’ rule and
(b) follows from the Markov properties of fN,i (1) and zi (2) [17, Eq. 11].

Since bi,t � bi,t(C) (3) is a sufficient statistic for si,t [19], we can define
π
(C)
i,t as a function [0, 1] → Δ({W,R}). Similarly, since the attacker has complete

observability, it can also compute bi,t, and hence we can define π
(A)
i,t as a function

SN × [0, 1] → Δ({A,F}) [17]. (Strategies can be time-dependent, as indicated by
the subscript t.)

Proposition 2. Let Xi,t represent the number of recoveries of node i that
occurred by time t and define Ti,∅ � inft[si,t = ∅]. If (π(C)

i , π(A)) are station-
ary and π

(C)
i (R | b) > 0 for all b, then (Xi,t)t=1,...,Ti,∅ is a renewal process.

Proof. To establish that (Xi,t)t=1,...,Ti,∅ is a renewal process we need to show
that a) the times between recoveries are independent and identically distributed
(i.i.d); and b) (Xi,t)t=1,...,Ti,∅ are not all zero with probability 1 [4, Ch. 3.2]. a) fol-
lows from the stationarity assumption and the Markov properties of (π(C), π(A))
and fN,i (1). b) follows from the assumption that π(C)(R | b) > 0 for all b. ��

Controller Objective. When selecting the strategy π
(C)
i,t , the controller bal-

ances two conflicting goals: minimize the average time-to-recovery T
(R)
i and min-

imize the frequency of recovery F
(R)
i . The weight η > 1 controls the trade-off

between these two objectives, which leads to the cost

Ji � T∅(ηT
(R)
i + F

(R)
i ) =

T∅∑

t=1

ηsi,t(1 − a
(C)
i,t ) + a

(C)
i,t =

T∅∑

t=1

cN(si,t, a
(C)
i,t ), (4)

where T∅ � inft[si,t = ∅], cN is the cost function, and (H,C,W,R) � (0, 1, 0, 1).
The objective in (4) corresponds to the cumulative cost optimality crite-

rion [19]. The following lemma establishes a relationship between (4) and the
discounted optimality criterion. It is key for our subsequent analysis.

Lemma 1.

E
H

(A)
i,T∅

,T∅
[Ji] = E

H
(A)
i,T∅

[ ∞∑

t=1

γt−1cN(Si,t, A
(C)
i,t )

]
where γ � (1 − pC,i).

Proof. For ease of notation, let Ct � cN(Si,t, A
(C)
i,t ). Then

E
H

(A)
i,T∅

,T∅
[Ji] = E

H
(A)
i,T∅

⎡

⎣
∞∑

T∅=1

T∅∑

t=1

P[T∅]Ct

⎤

⎦ (a)= E
H

(A)
i,T∅

⎡

⎣
∞∑

t=1

∞∑

T∅=t

P[T∅]Ct

⎤

⎦

= E
H

(A)
i,T∅

⎡

⎣
∞∑

t=1

∞∑

T∅=t

pC,i(1 − pC,i)T∅−1Ct

⎤

⎦ = E
H

(A)
i,T∅

⎡

⎣
∞∑

t=1

Ct(1 − γ)
∞∑

T∅=t

γT∅−1

⎤

⎦
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= E
H

(A)
i,T∅

⎡

⎣
∞∑

t=1

Ct(1 − γ)γt−1
∞∑

T∅=1

γT∅

⎤

⎦ (b)= E
H

(A)
i,T∅

[ ∞∑

t=1

γt−1Ct

]
.

In (a) we use the fact that
∑∞

T∅=1

∑T∅
t=1 ϕ(t, T∅) is an infinite sum with con-

straints 1 ≤ t ≤ T∅ ≤ ∞, which is equivalent to
∑∞

t=1

∑∞
T∅=t ϕ(t, T∅). In (b) we

use the fact that
∑∞

T∅=1 γT∅ = (1 − γ)−1 is a convergent geometric series. ��
Based on Lemma 1, we model intrusion recovery as a zero-sum game where the
controller and the attacker aim to minimize and maximize Ji (4), respectively.

Game 1 (Local Intrusion Recovery Game.)

minimize
π
(C)
i,t

maximize
π
(A)
i,t

E
(π

(C)
i,t ,π

(A)
i,t )

[Ji | bi,1 = 0] (5a)

subject to τk − τk−1 ≤ ΔR, τk � inf
t>τk−1

[a(C)
i,t = R] ∀i, k

(5b)

si,t+1 ∼ fN,i(· | si,t, a
(C)
i,t , a

(A)
i,t ) ∀t (5c)

oi,t+1 ∼ zi(· | a
(A)
i,t ) ∀t (5d)

a
(C)
i,t ∼ π

(C)
i,t (· | bi,t), a

(A)
i,t ∼ π

(A)
i,t (· | bi,t, si,t) ∀t, (5e)

where t = 1, 2, . . .; k = 0, 1, . . .; τ0 � 0; bi,1 defines the initial state distribu-
tion; (5b) is a bounded-time-to-recovery (btr) constraint; (5c) is the dynamics
constraint; (5d) captures the observations; and (5e) captures the actions.

Remark 3. Throughout this paper, we write min max (5a) instead of inf sup as
the optimization problems we consider have solutions (see Theorems 2–4 below).

Remark 4. We choose to minimize the expected cost (5a) to model the prefer-
ences of the controllers. This approach is justified by the fact that the preference
relations of the controllers satisfy the von Neumann-Morgenstern axioms [22, p.
26], as we show in the supplementary material [16, App. Q].

Remark 5. The btr constraint (5b) with ΔR < ∞ ensures that undetectable
intrusions are eventually recovered. It also implies that the optimal recovery
strategy may be time-dependent.

Remark 6. Game 1 is a partially observed stochastic game with one-sided partial
observability [17, Def. 3.1].

Equilibrium Analysis. We say that a control strategy π̃
(C)
i,t in Game 1 is a best

response against an attacker strategy π
(A)
i,t if it minimizes (5). Similarly, we say

that an attacker strategy π
(A)
i,t is a best response against π

(C)
i,t if it maximizes (5).

When both the controller and the attacker play best response, their strategy pair
is a Nash equilibrium (ne) π�

i = (π(C),�
i,t , π

(A),�
i,t ). Such an equilibrium, together

with the belief operator in (3), can also form a stronger equilibrium, namely a
perfect Bayesian equilibrium (pbe) [16, Def. 2].
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Theorem 2 (Equilibrium and best response in Game 1).

(A) For each strategy pair πi in Game 1, there exists a pair of best responses.
(B) Game 1 has a perfect Bayesian equilibrium (pbe).
(C) If si,t = H ⇐⇒ bi,t = 0, then Game 1 has a unique pure pbe.
(D) The average equilibrium cost in Game 1 is not larger than 1.

Proof. By definition, the best response problems in Game 1 correspond to finite
Partially Observable Markov Decision Processes (pomdps). Lemma 1 implies
that these pomdps can be formulated with the discounted cost optimality crite-
rion. Claim (A) thus follows from [19, Thms. 7.6.1-7.6.2]. The proof is based on
Banach’s fixed-point theorem. We omit it here as it is standard.

We prove (B) using the same approach as in [17, Prop. A.1]. Consider a
modified version of Game 1 where the time horizon T∅ = T < ∞ is fixed,
and the optimality criterion is the discounted objective in Lemma 1. Since this
game has a finite horizon, it can be represented in extensive form [16, App. G].
Consequently, it has a value [21, Thm. 4.3, Thm. 4.6]. Denote this value by vT

and let (π(C),T
i,t , π

(A),T
i,t ) be the corresponding ne. Next, let π

(C),T∞
i,t be an infinite-

horizon extension of π
(C),T
i,t where the controller follows strategy π

(C),T
i,t for the

first T time-steps and then follows an arbitrary strategy in the rest of the game.
Define c � min cN(·) and c � max cN(·) (4). It follows from Lemma 1 that the
cost incurred by π

(C),T∞
i,t is at most vT � vT +

∑∞
t=T+1 γt−1c = vT + γT c

1−γ and
at least vT � vT +γT c

1−γ . Since γT → 0 as T → ∞, the bounds [vT , vT ] converge
to a single value, denoted v∞. Let v� = inf

π
(C)
i,t

sup
π
(A)
i,t

[Ji]. By definition, vT ≤
v� ≤ vT . Hence, v∞ = v� is the value of Game 1. Consequently, any reachable
subgame of Game 1 has a ne. Since the proof of this claim is independent of bi,1

(5a), we can obtain a pbe by combining the nes of all reachable subgames with
those of the unreachable subgames [13, Thm. 2] and (3).

We prove (C) by construction. It follows from (4) that if si,t = H ⇐⇒
bi,t = 0, then the control strategy π̃

(C)
i,t (b) = R ⇐⇒ b �= 0 is strictly dominating

[11, Def. 1.1]. Given this control strategy, it follows from (4) that the strategy
π̃
(A)
i,t (s, b) = A∀s, b is strictly dominating for the attacker. Hence, (π̃(C)

i,t , π̃
(A)
i,t ) is

the unique pure pbe.
Lastly, to see why (D) holds, consider the control strategy that always recov-

ers, i.e., π
(C)
i,t (R | ·) = 1. It follows from (4) that the average cost incurred by

this strategy against any attacker strategy is 1. ��
Theorem 2 guarantees the existence of a strategy pair π�

i that solves (5). Such
a pair can be computed using the hsvi algorithm [17, Alg. 3], see Fig. 3.a. The
theorem also establishes that when one player’s strategy is fixed, a best response
for the opponent exists. Such a strategy can be computed using standard solution
algorithms for pomdps. Figure 3.b shows the expected cost for a best response
π̃
(C)
i,t . We note that π̃

(C)
i,t has a threshold structure, as stated below.
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Fig. 3. a) the ellipse indicates the place where the equilibrium strategy for the defender
is to almost always recover; b) the dashed red lines indicate alpha-vectors [19]; hyper-
parameters are listed in [16, App. E]. (Color figure online)

Theorem 3 (Threshold structure of best responses in Game 1).
For any π

(A)
i,t in Game 1, there exists a best response π̃

(C)
i,t that satisfies

π̃
(C)
i,t (bi,t) = R ⇐⇒ bi,t ≥ α�

i,t ∀t where the threshold α�
i,t ∈ [0, 1]. (6)

Corollary 1. The thresholds satisfy α�
i,t+1 ≥ α�

i,t for t ∈ [τk, τk+1]. As ΔR →
∞, all thresholds converge to α�

i , which is time-independent.

Theorem 3 states that there exists a best response for the controller that performs
recovery when the belief (3) exceeds a threshold (6). Further, Corollary 1 states
that the threshold increases until the next periodic recovery. When there are no
periodic recoveries (i.e., when ΔR = ∞), the threshold is independent of time.

We prove Theorem 3 and Corollary 1 by showing that the region of the
belief space where recovery is a best response is a connected interval [α�, 1]. To
show this property, we leverage optimal stopping theory and the concavity of
E

π̃
(C)
i,t

[Ji|bi,1] (4). We provide detailed proof in the supplementary material [16,

App. B].

Algorithm 1: Best response strategy.
1 Input: Game 1, a parametric optimizer po.

2 Output: An approximate best response.

3 Algorithm
4 if ΔR < ∞, d ← ΔR − 1, else d ← 1
5 Θ ← [0, 1]d

6 πi,θ,t(bt) �
{
R if bt ≥ θt

W otherwise
7 Ji,θ ← Eπi,θ,t, [Ji] (4)
8 π̂i,θ,t ← po(Θ, Ji,θ)
9 return π̂i,θ,t

Fig. 4. Algorithm for computing a best response control strategy in Game 1 (left);
mean compute time of Algorithm 1 for different values of ΔR and different parametric
optimizers: spsa, bo, cem, and de, as well as a dynamic programming baseline (dp)
(right); the error bars indicate the 95% confidence interval based on 20 measurements;
hyperparameters are available in [16, App. E].
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Numerical Evaluation. Computing a best response is equivalent to solving a
pomdp, which generally is pspace-hard [23, Thm. 6]. However, Theorem 3 and
Corollary 1 imply that we can parameterize π̃

(C)
i,t with a finite number of thresh-

olds. Given such parametrization, we formulate the best response problem as a
parametric optimization problem, which can be solved efficiently with standard
optimization algorithms. Algorithm 1 contains the pseudocode of our solution.
We observe in Fig. 4.b that our algorithm quickly finds a best response for all
ΔR if we choose the appropriate optimizer. By contrast, dynamic programming
(dp) becomes computationally intractable as ΔR → ∞.

Figure 5 shows a comparison between the operational cost (4) incurred by
the equilibrium strategy in Game 1 and the periodic recovery strategy used in
many state-of-the-art intrusion-tolerant systems [7]. We note that the cost of
the equilibrium strategy remains consistently lower than the cost of the periodic
strategy. However, we also observe that the benefit of the equilibrium strategy
reduces when a) the Kullback-Leibler (kl) divergence between zi(· | F) and
zi(· | A) (2) decreases (i.e., when the intrusion detection accuracy decreases);
and b) when the intrusion cost η (4) becomes very large, in which case it is
optimal to always perform recovery.

Game-theoretic recovery strategies can significantly reduce the operational
cost of state-of-the-art intrusion-tolerant systems if an accurate intrusion
detection model is available and the cost of recovery is significant. Other-
wise, periodic recovery strategies can be optimal.

Key insight

Fig. 5. Comparison between the operational cost incurred by equilibrium and periodic
strategies in Game 1 as functions of η (4) and the kl divergence between zi(· | F) and
zi(· | A) (2); hyperparameters are listed in [16, App. E].

4.2 The Global Replication Game

The global game involves two players: a system controller that adjusts the repli-
cation factor Nt in order to maintain service availability and minimize opera-
tional cost, and an attacker that aims to maximize that cost. At each time t,



Intrusion Tolerance as a Two-Level Game 15

the system controller receives the belief states b1,t, . . . , bNt,t from the nodes and
decides whether or not Nt should be increased (see Fig. 1). Similarly, at each
time t, the attacker selects a subset of nodes to attack. A node that fails to send
the value of bi,t at time t is considered crashed by the controller, which evicts
the node and decrements Nt by 1. (Note that the automatic eviction means that
the controller never has to remove a node.)

We define the state of the game to represent the number of healthy nodes as
estimated by the controller. The state space thus is SS � {0, 1, . . . , smax} with
initial state s1 = N1. The state evolves as st+1 ∼ fS(· | st, a

(C)
t ,a(A)

t ), where
a
(C)
t ∈ {0, 1} is the number of nodes added by the controller at time t, a(A)

t ∈
{F,A}Nt is the attacker action, and fS is the transition function, which depends
on the local control strategies in Game 1.

System Reliability Analysis. Proposition 1 implies that correct service is
guaranteed if st > f , where f is the tolerance threshold. The mttf thus equals
the mean hitting time of a state where st ≤ f :

E[T (F) | S1 = s1] = E(St)t≥1

[
inf {t ≥ 1 | St ≤ f} | S1 = s1

]
.

Consider the case where the system controller and the node controllers are pas-
sive, i.e., when there are never recoveries or additions of nodes. Then,

E[T (F) | S1 = s1] =
{

0 if s1 ≤ f
1 +

∑
s′∈SS

Ps1,s′E[T (F) | S1 = s′] if s1 > f,

which defines a system of |SS| linear equations, one for each state s ∈ SS.
The reliability function of the system is R(t) = P[T (F) > t] = P[St > f ].

Applying the Chapman-Kolmogorov equation, [19, Eq. 2.12], we have that R(t) =∑
s∈S′

S

(
eT

s1
Pt

)
s
, where es1 is the s1-basis vector and S ′

S � {s|s > f, s ∈ SS}
(see Fig. 6.b).

Fig. 6. The mttf and the reliability function in Game 2 when all controllers are passive;
T (F) is a random variable representing the time when Nt < 2f + k + 1 with f = 3 and
k = 1 (Prop. 1); hyperparameters are listed in [16, App. E].
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Controller Objective. Increasing the replication factor Nt improves service
availability T (A) but increases cost (see Fig. 6.a). The goal of the controller is
thus to find the optimal cost-redundancy trade-off, i.e., to minimize

J � lim
T→∞

[
T∑

t=1

a
(C)
t

T

]
subject to T (A) ≥ εA, (7)

where εA is the chosen lower bound on service availability. For example, if εA =
0.999, then at most 8.4 h of service disruption per year is allowed. Note that the
availability constraint can be written in terms of the state st as

lim
T→∞

[
T∑

t=1

1st≥f+1

T

]
≥ εA.

Remark 7. (7) reflects the fact that the more nodes there are in the system, the
lower the throughput of the consensus protocol (see [16, Fig. 15]).

Given (7) and the Markov property of st, we define the controller and the
attacker strategies as π(C) : SS → Δ({0, 1}) and π(A) : SS → Δ({F,A}Nt),
respectively. (We restrict the strategies to be time-independent, as stationary
best responses and equilibria exist; see Theorem4 below.) Based on these defini-
tions, we model replication control as a constrained, stochastic zero-sum game.

Game 2 (Global Replication Game.)

minimize
π(C)

maximize
π(A)

E(π(C),π(A)) [J | s1 = N1] (8a)

subjectto E(π(C),π(A))

[
T (A)

]
≥ εA (8b)

st+1 ∼ fS(· | st, a
(C)
t ,a(A)

t ) ∀t (8c)

a
(C)
t+1 ∼ π(C)(· | st), a

(C)
t+1 = 1ifst ≤ f ∀t (8d)

a(A)
t+1 ∼ π(A)(· | st) ∀t, (8e)

where (8b) is the availability constraint; (8c) is the dynamics constraint; and
(8d)–(8e) capture the actions.

Remark 8. To satisfy (8b) in the presence of network partitions, we use the
primary-partition model to circumvent the cap theorem [15, §3.C].

Equilibrium Analysis. When both the controller and the attacker play best
response, their strategy pair is a Nash equilibrium (ne) π�. Due to the Markov
property of the strategies, π� can also form a stronger equilibrium, namely a
Markov perfect equilibrium (mpe) [16, Def. 3].
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Theorem 4 (Equilibrium and best response in Game 2). Assuming

fS(st+1 | st, a
(C)
t ,a(A)

t ) > 0 ∀st+1, st, a
(C)
t ,a(A)

t . (T4.1)

∃π(C) such that E(π(C),π(A))

[
T (A)

]
≥ εA ∀π(A). (T4.2)

Then, the following holds.

(A) For each strategy pair π in Game 2, a pair of stationary best responses can
be obtained through linear programming.

(B) Game 2 has a constrained, stationary Markov perfect equilibrium (mpe).

Assumption (T4.1) implies that Game 2 is unichain [2] and (T4.2) implies
that the constraint in (8b) is feasible (i.e., a Slater condition [2]). Under these
assumptions, Theorem 4 guarantees the existence of an mpe for Game 2. The
theorem also establishes that when the strategy of one player is fixed, a best
response for the opponent can be computed in polynomial time using linear pro-
gramming (see Fig. 8) [2, Thm. 4.3]. By contrast, computing an mpe generally
means solving a ppad-complete problem [16, App. H]. Fortunately, upon exam-
ination of (8), we find that Game 2 has a special structure that allows efficient
computation of equilibria.

Theorem 5 (Threshold structure of best responses in Game 2). Given
(T4.1), (T4.2), any attacker strategy π(A), and assuming

Eπ [St+1|St = s + 1] = Eπ [St+1|St = s] + 1 ∀π, t ≥ 1, (T5.1)

then there exist two strategies π
(C)
λ1

and π
(C)
λ2

that satisfy

π
(C)
λ1

(s) = 1 ⇐⇒ s ≤ β1 and π
(C)
λ2

(s) = 1 ⇐⇒ s ≤ β2 ∀s ∈ SS, (9)

and a best response control strategy π̃(C) that satisfies

π̃(C)(s) = κπλ1(s) + (1 − κ)πλ2(s) ∀s ∈ SS, (10)

for some κ ∈ [0, 1], Lagrange multipliers λ1, λ2 ≥ 0, and thresholds β1, β2 ≥ f .

Remark 9. The randomization in (10) is required to ensure that the service
availability constraint (8b) is satisfied in expectation [2, Thm. 4.4].

Assumption (T5.1) says that an additional healthy node at time t increases the
expected number of healthy nodes at time t + 1 by 1. Under this assumption,
Theorem 5 states that there exists a best response for the controller that can be
written as a mixture of two threshold strategies (see Fig. 7). Such a strategy is
(weakly) decreasing in the sense that the fewer healthy nodes there are, the more
likely it is that the controller will add a node, which is intuitive. This structure
means that a (weakly) dominating strategy for the attacker is to minimize the
expected number of healthy nodes E[S] [11, Def. 1.1].
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Corollary 2. Assuming each π(C) satisfies (10), then an attacker strategy that
minimizes E[S] is (weakly) dominating [11, Def. 1.1].

Corollary 2 means that we can obtain an mpe of Game 2 by computing a best
response of each player independently. Due to the independence, this compu-
tation can be done in polynomial time using the linear program of Theorem4.

Remark 10. Since Game 1 and Game 2 are zero-sum, every equilibrium leads to
the same value [22, Ch. 3], regardless of the strategies employed at equilibrium.
Consequently, we do not need to concern ourselves with equilibrium selection.

The proofs of Theorems 4–5 and Cor. 2 involve a combination of techniques
from cmdp theory and lattice programming. We defer the rigorous proofs to the
supplementary material [16, App. C–D, App. R]. However, for the coherence of
our argument, we outline the main steps here. To prove Theorem 4, we start by
formulating the problem of computing a best response as a constrained Markov
decision process (cmdp). Assumption (T4.1) implies that this cmdp has a unique
occupation measure ρ ∈ Δ(SS ×{0, 1}) for each stationary π [2]. Since (7) is lin-
ear in the occupation measure, the best responses are solutions to certain linear
programs. Let BC and BA be the solution correspondences of these programs.
Then B(π) = BC(π(A)) ×BA(π(C)) satisfies the conditions of Kakutani’s fixed
point theorem, which means that a constrained mpe exists [3, Thm. 2.1].

Fig. 7. Illustration of Theorem 5.

To prove Theorem 5, we formulate the
best response cmdp for the controller as a
discounted mdp through Lagrangian relax-
ation [2, Thm. 3.7]. Then, leveraging Top-
kis’ theorem, we show that there exists a
best response threshold strategy for any non-
negative Lagrange multiplier, discount factor
in [0, 1), and attacker strategy. Next, we use
the vanishing discount method to establish
that the threshold structure also applies under the average cost optimality cri-
terion (7). Then the proof of Theorem5 follows from standard results in cmdp
theory [2, Thm. 12.7]. Finally, the corollary is obtained by analyzing the Bellman
equation induced by Theorem5.

Fig. 8. a) compute time to obtain a best response in Game 2 via linear programming;
the error bars indicate the 95% confidence interval based on 20 runs; b) availability of
the equilibrium strategy and two fixed replication strategies with different numbers of
nodes N1; hyperparameters are listed in [16, App. E].
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Numerical Evaluation. Figure 8.a shows the compute time to obtain a best
response in Game 2 (Theorem 4). Figure 8.b shows a comparison between the ser-
vice availability achieved by the equilibrium strategy and the fixed-replication
strategy that is used in many state-of-the-art intrusion-tolerant systems [7]. As
depicted in the figure, the equilibrium strategy guarantees a high service avail-
ability for the system’s lifetime. In contrast, the availability of the fixed replica-
tion strategy degrades over time.

Game-theoretic replication strategies can guarantee a high service availabil-
ity. By contrast, many state-of-the-art intrusion-tolerant systems are based
on fixed replication strategies, for which no such guarantee has been given.

Key insight

5 Evaluation of the Game-Theoretic Strategies

To evaluate our game-theoretic control strategies, we implement a proof-of-
concept intrusion-tolerant system on a testbed and evaluate it against 10 types
of network intrusions. It is a distributed system with 13 nodes, each of which
runs a service replica in a Docker container, a node controller, and the snort
ids. For details of our implementation and the network intrusions, see [16].

5.1 Baseline Control Strategies

We compare the equilibrium strategies in Game 1 and 2 with those used in
state-of-the-art intrusion-tolerant systems, for which we choose three baseline
strategies: no-recovery, periodic and periodic-adaptive. The first base-
line, no-recovery, does not recover or add any nodes, which corresponds to
the strategy used in systems like rampart and secure-ring. The second base-
line, periodic, recovers nodes every ΔR time-steps but does not add new nodes.
This strategy is used in most intrusion-tolerant systems proposed in prior work,
including pbft and vm-fit [7]. The third baseline, periodic-adaptive, recov-
ers nodes every ΔR time-steps and adds a node when oi,t ≥ 2E[Oi,t], which
approximates the heuristic strategies used in systems such as sitar, itsi, and
itua. We provide a comprehensive review of state-of-the-art intrusion-tolerant
systems in the supplementary material [16, App. O].

5.2 Testbed Results

The results are summarized in Fig. 9. The brown bars relate to the equilibrium
strategies of Game 1 and 2. The red bars relate to the case where the controllers
follow best response strategies against a (different) static attacker. The blue,
green, and pink bars relate to the baselines (Sect. 5.1).
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The leftmost column in Fig. 9 shows the average availability for different val-
ues of ΔR. We observe that the game-theoretic strategies achieve close to 100%
service availability in all of the cases we studied. By contrast, no-recovery
leads to around 0% availability. The availability achieved by periodic and
periodic-adaptive is in-between; they achieve a high availability when ΔR is
small (i.e., when recoveries are frequent) and a low availability when ΔR → ∞.
We note that increasing N1 from 3 to 9 doubles the availability achieved by no-
recovery but has a negligible impact on the performance of the other strategies.

The middle column in Fig. 9 shows the average time-to-recovery T (R). We
observe that T (R) of the game-theoretic strategies is an order of magnitude
smaller than that of periodic and periodic-adaptive and two orders of mag-
nitude smaller than that of no-recovery. This result illustrates the benefit of
feedback control, which allows the system to react promptly to intrusions.

Finally, the rightmost column in Fig. 9 shows the average frequency of recov-
ery F (R). We note that F (R) of the equilibrium strategy is about the same
as periodic and periodic-adaptive. As expected, F (R) is higher for the
best response strategy than the equilibrium strategy. This demonstrates the
exploitability of the best response strategy, allowing the attacker to trigger excess
recoveries.

Fig. 9. Comparison between our game-theoretic strategies and the baselines (Sect. 5.1);
columns represent performance metrics; x-axes indicate values of ΔR; rows relate to
the number of initial nodes N1; error bars indicate the 95% confidence interval from
evaluations with 20 random seeds.

5.3 Discussion of the Testbed Results and the Theoretical Analysis

The key findings from the evaluation and the analysis are summarized below.

(i) The game-theoretic strategies can achieve a lower time-to-recovery and a
higher service availability than the fixed periodic strategies used in state-of-
the-art intrusion-tolerant systems (Fig. 9). The btr constraint (5b) and the
availability constraint (8b) provide theoretical guarantees. No such guaran-
tees have been given for the baselines.
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(ii) The performance of the game-theoretic strategies depends on the accuracy
of the intrusion detection model zi (2) (see Fig. 5).

(iii) The best response strategies in both Game 1 and Game 2 have threshold
properties (Theorem 3–5, Corollary 1), which allow to compute them effi-
ciently (Fig. 4, Fig. 8).

(iv) The benefit of using an adaptive replication strategy as opposed to a fixed
strategy is mainly prominent when node crashes are frequent (see Fig. 8.b
and cf. the results of periodic and periodic-adaptive in Fig. 9).

(v) A non-equilibrium strategy is exploitable in the sense that it allows a strate-
gic attacker to trigger excess recoveries (cf. the results of equilibrium and
best-response in Fig. 9). However, the increase in operational cost caused
by the excess recoveries is relatively small in the scenarios we studied.

6 Related Work

Since the early 2000s, researchers have studied automated security through mod-
eling attacks and response actions on an it infrastructure as a game between
an attacker and a defender (see textbooks [1,26] and survey [25]). The game
is modeled in different ways depending on the use case. Examples include: apt
games [13,18], honeypot placement games [8], malware games [27], and intrusion
response games [14]. While these works have obtained promising results, none of
them considers the integration with intrusion-tolerant systems as we do in this
paper. Further, a drawback of the existing solutions is that many are inefficient
(compared to our threshold-based solutions) and lack safety guarantees. Finally,
and most importantly, nearly all of the previous works are limited to simulation
environments for evaluation, and it is unclear how their results generalize to
practical systems. In contrast, our game-theoretic strategies are useful in prac-
tice: they can be integrated with existing intrusion-tolerant systems, they satisfy
safety constraints, and they are computationally efficient. (We provide a more
detailed review of the related work in the supplementary material [16, App. O].)

7 Conclusion

This paper presents a novel formulation of intrusion tolerance for a system with
service replicas as a two-level game: a local game models intrusion recovery and
a global game models replication control. We prove the existence of equilibria
in both games and derive a threshold structure of the best responses, which
enables efficient computation of control strategies. We implement and evaluate
the game-theoretic strategies on a testbed and assess their performance against
10 types of network intrusions. The testbed results demonstrate that our game-
theoretic strategies can significantly improve service availability and reduce the
operational cost of state-of-the-art intrusion-tolerant systems. In addition, our
game strategies can meet any chosen level of service availability and time-to-
recovery, bridging the gap between theoretical and operational performance.
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Abstract. Penetration testing is an essential means of proactive defense
in the face of escalating cybersecurity incidents. Traditional manual pen-
etration testing methods are time-consuming, resource-intensive, and
prone to human errors. Current trends in automated penetration test-
ing are also impractical, facing significant challenges such as the curse
of dimensionality, scalability issues, and lack of adaptability to network
changes. To address these issues, we propose MEGA-PT, a meta-game
penetration testing framework, featuring micro tactic games for node-
level local interactions and a macro strategy process for network-wide
attack chains. The micro- and macro-level modeling enables distributed,
adaptive, collaborative, and fast penetration testing. MEGA-PT offers
agile solutions for various security schemes, including optimal local pen-
etration plans, purple teaming solutions, and risk assessment, providing
fundamental principles to guide future automated penetration testing.
Our experiments demonstrate the effectiveness and agility of our model
by providing improved defense strategies and adaptability to changes at
both local and network levels.

Keywords: Penetration Testing · Cyber Security · Meta-Game ·
Cyber Risk Assessment · Agile Defense

1 Introduction

With the exponential growth of network technologies and the escalating fre-
quency of security incidents, cybersecurity has become a global concern [2,9].
In response to these challenges, penetration testing has emerged as a crucial
solution for uncovering system vulnerabilities and assessing network security
through authorized ethical attacks [4]. However, traditional manual penetration
testing performed by skilled IT professionals has several limitations. It can be
time-consuming, resource-intensive, and prone to human error. Relying solely
on manual testing often falls short of identifying all vulnerabilities within the
system. Thus, there is a need for automation and the integration of advanced
threat intelligence into the penetration testing process, enabling a more efficient
and scalable approach to enhancing cybersecurity.

Current proposed automated penetration testing methods are increasingly
becoming non-standard, complex, and resource-consuming, despite tool advance-
ments. Reinforcement learning (RL) or Markov Decision Process (MDP) based
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Sinha et al. (Eds.): GameSec 2024, LNCS 14908, pp. 24–44, 2025.
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methods [3,4] suffer from the curse of dimensionality, as they define the state
space as the collection of all known information for each machine on the net-
work. Partially Observable Markov Decision Process (POMDP) methods [8] face
scalability issues, making it unfeasible to model and solve for large networks.
Additionally, these methods lack adaptability to changes, as they assume the
network structure and software configuration remain unchanged to learn the
optimal policy. Many proposed models do not follow the Tactics Techniques and
Procedures (TTPs) in real cybersecurity practice, relying mainly on hypothe-
ses and simulations, which undermines their transition to praxis. Furthermore,
merely identifying vulnerabilities through penetration testing is insufficient; it is
crucial to provide defense suggestions and risk analysis based on the testing to
enhance overall security.

To address the limitations of current penetration testing methods, we propose
a meta-game-based automated penetration testing framework (MEGA-PT). In
this framework, the micro tactic game captures the interactions between the
defender and attacker at each local node, while the macro strategy process mod-
els lateral movement and the attack chain across the entire network. This app-
roach offers several key features: practical implications, as the sequential interac-
tions in each micro tactic game follow the MITRE ATT&CK framework [7] and
use extensive-form games to model attack/defense dynamics; distributed pene-
tration testing, with modularized processes at each micro tactic game allowing
for parallel computation; and adaptability to changes at both the local and net-
work levels, ensuring efficient testing and scalability.

Our proposed model enables various security schemes, depending on the solu-
tion concept selected for the meta-game. This extension of penetration testing
goes beyond vulnerability discovery to include defense strategy recommendations
and risk analysis. Specifically, the model provides solutions for the following secu-
rity schemes: optimal local penetration plans under certain defense strategies,
purple teaming solutions for enhanced defense suggestions, and risk assessments
at equilibrium. Our contributions can be summarized as follows:

1. We propose a meta-security game framework MEGA-PT for automated pen-
etration testing, where micro tactic games at each local node are modeled as
extensive-form games, and the macro strategy process is modeled as a Markov
decision process.

2. We offer applicable solution concepts for security schemes aimed at vulnera-
bility discovery, defense suggestion, and risk analysis.

3. Our experiments demonstrate the effectiveness of MEGA-PT by providing
improved defense strategies and adaptability to changes at both local and
network levels.

4. In essence, MEGA-PT establishes fundamental principles to drive the future
of automated penetration testing and its practices.

2 Problem Formulation

Penetration testing is an ethical attack aimed at identifying system vulnerabili-
ties, providing defense suggestions, and offering risk assessments. In this context,
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Fig. 1. Attack plan and tactics, techniques, and procedures (TTPs). Depending on the
level of detail, each attack plan can be elaborated by a sequence of tactics (from left to
right), where each tactic is composed of a sequence of techniques, and each technique
can be described by a sequence of procedures.

the term attacker refers to the penetration testing agent, while the defender rep-
resents the system security management engine. To describe attacker behaviors
within a security program, Tactics, Techniques, and Procedures (TTPs) are com-
monly used. Figure 1 illustrates the hierarchy between these terms. For security
strategy analysis, we focus on Tactics and Techniques in penetration testing,
omitting the detailed Procedures.

To describe interactions in penetration testing using TTPs, we propose a
meta-security game over a network graph. The macro strategic game represents
strategic attack activities between nodes, while the micro tactic game details
tactic-level attack procedures on each local node. Let the directed graph G =
〈V, E〉 represent the target network topology, where V is a set of nodes (e.g.,
server, database, device), and E ⊆ V × V is a set of directed edges representing
connections (e.g., SSH, RDP, cloud services) from node u to node v. Self-loops
are allowed as they indicate continued exploration of the same node. Let v0 ∈ V
be the initial foothold in the system. Figure 2 shows an example of the networked
system topology. The penetration tester, as an ethical attacker, aims to explore
available information, exploit discovered vulnerabilities, and influence critical
assets inside the network.

2.1 Micro Tactic Games

Game-Theoretic Modeling
When an attacker gains access to one node, there are multiple steps involved
before he completes the exploration and exploitation process on the node.
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Fig. 2. Illustration of the networked system topology. The system contains 5 nodes
(web server, application server, 2 user devices, and critical asset). The penetration
testing starts from the web server, which is open to the external network.

To model the sequential moves at each local node, we use the concept of an
extensive-form game tree to explicitly and visually represent the sequential
moves, possible outcomes, and information available at each decision point in
a strategic interaction. Figure 3 illustrates an example of a game tree at the web
server. The attacker can choose to perform reconnaissance on hosts and services
on the web server and then exploit the host to perform privilege escalation. The
defender can choose to accept or deny the access request based on their defense
policy. Depending on the privilege levels, the attacker could collect different cre-
dentials in the game, leading to various expected tactic outcomes and connecting
to different nodes in the network.

Definition 1 (Micro Tactic Game (MTG)). The Micro Game of the
MEGA-PT is defined by a set of Micro Tactic Games (MTG) {Γ v}v∈V where
V is the set of nodes in the system. Given a node v ∈ V in the network,
the MTG on node v can be represented by an extensive-form game tuple
Γ v = 〈N ∪{c},Hv, P, {Av

i }i∈N∪c, σ
v
c , {uv

i }i∈N ,Zv〉, where each components rep-
resents:

– Players N = {a, d} There are two main players in the game: the attacker (a)
and the defender (d). Additionally, c is the nature that represents the system
randomness.

– Histories Hv Each vertex in the game tree h ∈ Hv corresponds to a unique
sequence of actions taken from the beginning of the game.

– Turn Function P : Hv �→ N ∪ {c} The function P (h) determines whose
turn it is to make a move at each decision point for a given history vertex h.

– Techniques Av
i Av

i is a set of techniques that player i can take. A(h) denote
the feasible techniques for player i = P (h) at vertex h ∈ Hv.

– System Randomness σv
c ∈ Σv

c Nature’s fixed policy σv
c specifies the system

randomness, which could be related to network traffic load, randomized system
configuration, hardware failures, etc.
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– Tactic Expected Outcomes Zv Zv represents the finite set of possible out-
comes for each attack sequence in the MTG. These outcomes correspond to
the results observed at the leaf vertices of the game tree, which could be the cre-
dentials to user devices, authorized connection to the server, no vulnerability
found, etc.

– Utilities uv
i : Zv �→ R The utility function uv

i determines the payoff or cost
player i receives when reaching a certain outcome.

Fig. 3. Micro Tactic Game at the web server. The attacker needs to discover the host
and services on the node, requesting privilege escalation to collect the credentials lead-
ing to other nodes. The defender could grant or deny the attacker’s request depend-
ing on the defense strategy. The players’ sequence of actions would lead to different
expected tactic outcomes.

In the context of TTPs, the attack tactic at the current node corresponds
to a sequence of techniques, while the outcomes represent the high-level tactical
goals. In this work, we assume that the tactical outcomes are either staying in
the current node or leading to another node that can be connected from the
current node. Thus, with a slight abuse of notation, we denote Zv = {u | u ∈
V, (v, u) ∈ E}.

Penetration Plans
Before we define tactics or strategies, we need to understand the basis on which
players make their decisions. For any strategic player, decisions are made based
on the current knowledge of the situation. However, it is sometimes challenging
for the player to obtain the complete interaction history due to partial observa-
tions. Consequently, there are decision vertices in the game tree that the player
cannot distinguish between. In an extensive-form game, this is called an infor-
mation set. In this work, we refer to this information set as a knowledge set.
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Definition 2 (Knowledge Set). Given the MTG at node v ∈ V, a knowledge
set Ii ⊆ Hv of a player i represents a set of decision vertices where the player i
has the same available techniques and cannot distinguish between the vertices.

The concept of knowledge set helps us better describe the decision-making
process for both players. Given the MTG at the current node, attackers can
construct their tactics in different ways. One approach is to have a sequential
plan of techniques from the beginning to the end of the game. This step-by-
step pure penetration or defense plan assigns a single technique to each possible
knowledge set. Players can also randomize over single-technique plans at each
knowledge set, known as a mixed penetration or defense plan.

Definition 3 (Pure Penetration (Defense) Plan). Consider the MTG
defined in Definition 1. Given the MTG Γ v, a pure penetration or defense plan
at node v ∈ V for player i ∈ N is a mapping qv

i : Ii �→ Av
i that assigns a tech-

nique qv
i (Ii) ∈ A(Ii) for every knowledge set Ii ∈ Ii. Denote Qv

i as the set of all
possible pure penetration or defense plans for player i ∈ N at this micro game.
The pure penetration or defense plan for the entire system is defined as the set
{qv

i }v∈V , with i = a means the attacker and i = d means the defender.

Definition 4 (Mixed Penetration (Defense) Plan). Consider the MTG
defined in Definition 1. Given the MTG Γ v, a mixed penetration or defense
plan at node v ∈ V for player i ∈ N is a probability distribution over all of
player i’s pure penetration plans, i.e., σv

i ∈ Δ(Qv
i ). Denote Σv

i as the set of all
possible mixed penetration or defense plans for player i ∈ N at this micro game.
The mixed penetration or defense plan for the entire system is defined as the set
{σv

i }v∈V , with i = a means the attacker and i = d means the defender.

The other approach is to focus on each knowledge set instead of defining
the step-by-step actions of the entire game. At each knowledge set, a proba-
bilistic distribution is assigned over the feasible techniques. This corresponds to
the behavioral strategy in extensive-form games. Instead of planning everything
ahead, this policy focuses on the decisions in each knowledge set. In this work,
we call it an operational search plan. Denote by Ii the collection of knowledge
sets of player i ∈ N . By definition, for every knowledge set Ii ∈ Ii, let A(Ii) be
the set of possible actions at Ii. Formally, the definition is given as follows.

Definition 5 (Operational Search Plan). Given the MTG at node v ∈ V,
an operational search plan for player i ∈ N is a function mapping each of his
knowledge set to a probability distribution over the set of possible techniques at
that knowledge set, given by:

bv
i : Ii �→

⋃

Ii∈Ii

Δ(A(Ii)), (1)

such that bv
i (Ii) ∈ Δ(A(Ii)) for all Ii ∈ Ii. Denote Bv

i as the all admissible set
of operational search policies of player i ∈ N at this MTG.
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In this work, we assume that all the players have perfect recall; i.e., the
player remembers every piece of information that he knows from the past, includ-
ing his moves, the other player’s moves, or chance moves. Under this assumption,
we can always find the equivalence between the operational search plan is equiv-
alent to the mixed penetration plans at the MTG of each node.

Theorem 1 (Planning Equivalence). In every MTG in extensive form, if
player i ∈ N has perfect recall, then for every mixed penetration plan there
exists an equivalent operational search plan, and vice versa.

Proof. For interested readers, the proof of the theorem follows Kuhn’s theorem
[1,5] in extensive-form games.

Theorem 1 indicates the equivalence between the mixed penetration plan and
the operational search policy. The mixed penetration plan can be reduced to an
operational search policy, and conversely, the operational search policy can gen-
erate a mixed penetration plan. The mixed penetration plan provides a holistic
offline view, assigning a probability to each possible sequence of interactions.
In contrast, the operational search policy describes the online decision-making
process of the players. The equivalence allows us to choose the appropriate plan
for the corresponding security purpose. The theorem, on the one hand, indicates
that we can synthesize an operational strategy once we compute or are given a
penetration plan. On the other hand, it suggests that a penetration plan or the
course of actions of an attacker can be constructed after the penetration testing
by obtaining the attacker’s strategy at each decision point.

2.2 Security Schemes and Solution Concepts

Depending on the security goals, our framework is able to describe different
security schemes and provide corresponding solution concepts.

Optimal Local Penetration Plan
The primary goal of penetration testing is to identify vulnerabilities in the target
system. This includes not only surface-level vulnerabilities that can be detected
through vulnerability scanning but also deeper vulnerabilities that can only
be discovered through a sequence of attack actions. Penetration testing pro-
vides a thorough examination of the system, and this type of security scheme is
commonly known as red teaming. Red teaming involves simulating a malicious
attacker to assess the effectiveness of the current defense policy. In this context,
the defender’s strategy remains fixed, while the attacker responds optimally to
the defense policy. Red teaming aims to determine the optimal local penetration
plan σv,red

a that maximizes the attacker’s utility, given the defender’s strategy
and the inherent system randomness in the system. The solution concept for the
optimal local penetration plan is defined as follows:

Definition 6 (Optimal Local Penetration Plan). For the MTG at node
v ∈ V, given the defense strategy σv

d and system randomness σv
c , the optimal local
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penetration plan is a probability distribution over all attacker’s pure penetration
plans, i.e., σv

a ∈ Δ(Qv
i ) given by

σv,red
a (σv

d , σv
c ) ∈ arg max

σv
a∈Σv

a

uv
a(σv

a, σv
d , σv

c ), (2)

where uv
a(σv

a, σv
d , σv

c ) is the expected utility of outcome generated following the
plan profile Φv = (σv

a, σv
d , σv

c ).

The optimal local penetration plan is an ex-ante strategy where the attacker
or penetration tester has complete information about the local node, includ-
ing defense strategy, possible vulnerabilities, and system randomness. With this
information, an optimal pure or mixed penetration plan can be obtained to
visualize different attack chains along with their outcomes and probabilities.
However, in practice, the attacker or penetration tester may not have com-
plete information. Their penetration plan is developed through learning (e.g.,
via machine learning or reinforcement learning) without complete prior knowl-
edge about the local node. The practically used penetration plan belongs to the
family of operational search plans, which is a mapping from the knowledge set
to the probability distribution over the set of possible techniques.

Remark 1 (Optimal v.s. Practical). The practically used penetration plan is
equivalent to the optimal local penetration plan when the penetration tester’s
learning results are perfect. This is possible when the penetration testing agent
or attacker, through its learning process, has identified the exact set of actions
to take in each state to maximize the expected reward, as if it had known the
full model from the beginning. Under these conditions, the practically used pen-
etration plan is identical to the optimal operational search plan. According to
Theorem 1, this is thus equivalent to the optimal local attack policy in Defini-
tion 6.

The optimal local penetration plan generates useful byproducts that help
describe the penetration plan. One such byproduct is the course of action ,
which describes the realized sequence of attack techniques derived from the pen-
etration plan. Another important concept is the tactic outcome probability ,
which represents the total probability of reaching any outcome of the game
z ∈ Zv. Let Hz ⊂ H be the set of leaf vertices with outcome z ∈ Zv. Define
L(hz) = {(h1, a1), (h2, a2), . . . } as the sequences of vertices and actions leading
to the leaf vertex hz ∈ Hz. The tactic outcome probability is defined as follows.

Definition 7 (Tactic Outcome Probability). For the MTG at node v ∈ V,
given the nature’s fixed policy (if any) and the plan profile of the attacker and
the defender, i.e., Φv = (σv

a, σv
d , σv

c ), we define τv : Zv �→ [0, 1] as the tactic
outcome probability. We use τv(z) to denote the probability of reaching outcome
z ∈ Zv as

τv(z | Φv) ==
∑

hz∈Hz

⎡

⎣
∏

(hj ,aj)∈L(hz)

σv
i (aj)1{P (hj)=i}

⎤

⎦ , (3)
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where P (hj) is the turn function and σv
i (aj) is the probability that action aj is

chosen by player i = P (hj).

Purple Teaming Defense Plan
Purple teaming is a collaborative cybersecurity assessment that combines attack
and defense strategies to enhance the overall security posture of a system. While
red teaming penetration testing predicts the attacker’s behavior, purple team-
ing focuses on improving the defense policy to mitigate potential attacks. This
approach corresponds to a Stackelberg game or leader-follower model, where the
defender, as the leader, enforces their strategy on the attacker, as the follower.
The defender must anticipate the attacker’s responses to the defense strategy
and optimize the defense policy accordingly, resulting in a bi-level optimiza-
tion problem. Penetration testing provides credible predictions of the attacker’s
penetration plan, enabling proactive defense with purple teaming. The solution
concept for the purple teaming defense plan is defined as follows:

Definition 8 (Optimal Purple Teaming Defense Plan). For the MTG
at node v ∈ V, given the system randomness σv

c ∈, the optimal purple team-
ing defense plan includes two parts: σv,pur

d ∈ Σv
d is the optimal purple teaming

defense plan, which is a probability distribution over all defender’s pure defense
plans, i.e.,σv,pur

d ∈ Δ(Qv
d); σv,∗

a ∈ Σv
a is the anticipated optimal local penetration

plan for the attacker given the defense plan.

σv,pur
d (σv

c ) ∈ max
σv
d∈Σv

d

uv
d(σv,∗

a , σv
d , σv

c ) (4)

s.t. σv,∗
a ∈ arg max

σv
a∈Σv

a

uv
a(σv

a, σv
d , σv

c ). (5)

The inner optimization problem aligns with the optimal local penetration
plan as defined in Definition 6, aiming to predict the worst-case attacker behav-
ior under the current defense strategy. Penetration testing, utilizing learning
techniques, determines the attacker’s anticipated response to a given defense
strategy. To implement purple teaming defense in practical settings, organiza-
tions undergo an iterative process where the defender tests a defense strategy,
observes the worst-case attack, and then adjusts the defense to achieve better
utility.

Risk Assessment at Equilibrium
Another important venue penetration testing contributes to is the risk assess-
ment of the system. Instead of focusing on individual attack events, a risk assess-
ment would take into account the average or the steady state of the long-term
behaviors of the attacker and defender in the long run. The concept of equilib-
rium in game theory offers a natural way to analyze these steady-state strategic
interactions within the system. A Nash Equilibrium (NE) in the MTG provides
a solution where no player has an incentive to deviate from their strategy. For-
mally, the solution concept for risk assessment is defined as follows:
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Definition 9 (Nash Equilibrium-Informed Risk Assessment). For the
micro tactic game at node v ∈ V, given the system randomness σv

c ∈ Σv
c , the

Nash equilibrium-informed risk assessment is a plan profile (σv,∗
a , σv,∗

d ), where
σv,∗

a is the equilibrium penetration plan for the attacker and σv,∗
d is the equilib-

rium defense plan for the defender. The Nash equilibrium plans satisfy

uv
i (σv,∗

i , σv,∗
−i ) ≥ uv

i (σi, σ
v,∗
−i ), (6)

for all admissible σv
i ∈ Σv

i and for all i ∈ N .

To practically solve the game, we consider a refinement of Nash equilibrium
in sequential games: Subgame Perfect Nash Equilibrium (SPNE). In addition
to satisfying the conditions of Nash equilibrium, SPNE requires that strategies
remain in equilibrium at every possible subgame of the overall game. It can
be solved using backward induction as the game-theory version of the dynamic
programming principles.

Theorem 2. For every finite micro tactic game at node v ∈ V with fixed sys-
tem randomness σc

v ∈ Σv
c , the game with perfect recall has a subgame perfect

Nash equilibrium in mixed or operational search penetration/defense plans. The
game with perfect information has a subgame perfect Nash equilibrium in pure
penetration and defense plans [6].

Theorem 2 states that we can always find the risk assessment equilibrium
in mixed plans or operational search policies, even with imperfect information.
Mixed penetration plans provide the probability of the entire attack/defense
action sequence occurring, offering a holistic view for analysis purposes. On the
other hand, operational search policies focus on what happens in each knowledge
set, providing a fine-grained strategy. The equivalence between them allows us
to zoom in or out as needed, facilitating flexible and comprehensive analysis.

2.3 Macro Strategic Process

One key component in the MTG is the utility function for each outcome, uv
i (z),

for all z ∈ Zv and i ∈ N . Utilities represent the payoff or cost of staying or
moving to the next node and must be evaluated globally, considering neighbor-
ing nodes and their connections. After local exploration and exploitation, the
attacker can use obtained credentials or discovered vulnerabilities to move to
different nodes, a process known as lateral movement. The attacker’s movement
and the creation of the attack kill chain depend on the network topology and the
expected utilities of each node. We model this decision-making process across
the network using an MDP, referred to as a Macro Strategic Process (MSP).

MSP Modeling

Definition 10 (Macro Strategic Process (MSP)). The Macro Strategic
Process of the MEGA-PT is defined by an MDP Λg. Given the target networked
system G = 〈V, E〉, the MSP for the attacker can be represented by a tuple Λg =
〈S,Ag, T,R, γ〉, where each component represents:
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– Network Nodes S = V: The nodes in the network form the state space.
Each node or state v ∈ V processes an MTG Γ v as defined in Definition 1.

– Connections Ag = E: The connections between the nodes are the attacker’s
action space, which is equivalent to all the directed edges in the network.

– Transition Success Probability T : S × Ag �→ Δ(S): This function
describes the success rate of the lateral movement attempt between the nodes.

– Movement Rewards R : S ×Ag ×S �→ R: The immediate reward or penalty
for the attacker when trying to laterally move along the edge to the other node.

– Discounting Factor γ ∈ (0, 1].

From a global perspective, each node in the network v ∈ V can be viewed
as a state in the Markov Decision Process. The edges in the network indicate
the lateral movement of the attacker within the network. Whether the attack
attempt is successful depends on the capability of the attacker. For simplicity,
in this work, we assume the transition success probability is defined as follows.
For every s ∈ V and ag ∈ Ag,

T (s′ | s = v, ag = (v, u)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if u = v and s′ = v,

ca if u �= v and s′ = u,

1 − ca if u �= v, and s′ = v,

0 otherwise.

(7)

If the attacker chooses to stay at the same node, the self-loop edge will lead to
the same state with probability one. If the attacker chooses to use any outgoing
edge and move to another node, the attempt will succeed with probability ca ∈
[0, 1], which represents the attacker’s capability. If the attempt fails, the attacker
will stay at the same node.

The goal of penetration testing is to estimate the potential damage an
attacker can inflict by compromising the network and affecting system produc-
tion. A positive reward is given when the attacker enters a node, with the reward
value depending on the node’s importance to the system. Conversely, staying at
the same node indicates that the attacker either failed to move to another node
or that the information obtained from the MTG was insufficient for progression.
Therefore, staying at the same node results in a negative penalty for the attacker.
The movement reward function is given by the following equation:

R(s = v, ag = (v, u), s′) =

{
Ma when s′ = v,

V̄ (v) when s′ = u , ∀u ∈ V \ {v}.
(8)

where Ma ∈ R− is a penalty for the attacker staying at the same node without
progressing towards the target. V̄ : V �→ R+ is the reward for entering the state.
This value depends on the production importance of the node v ∈ V to the
target system.
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Global Attack Strategy
Unlike traditional MDPs, where the attacker can freely choose actions to opti-
mize expected utility, in the realistic penetration testing settings, the attack
strategy at the network level depends on explorations at the local nodes. If the
attacker does not find any vulnerabilities leading to the next node, they cannot
move forward. Therefore, the global attack strategy in the MSP relies on the
outcomes of the MTG.

For each MTG Γ v at node v ∈ V, the optimal local penetration plans generate
the tactic outcome probability as defined in Definition 7. Since the outcome
space of the MTG is equivalent to the set of the outgoing edges at node v, i.e.,
Zv = {u | u ∈ V, (v, u) ∈ E}, we can view the tactic outcome probability τv(z)
as the probability that the attacker will choose action ag = (v, z) for the MSP.
Formally, it leads to the following definition.

Definition 11 (Global Attack Strategy). Consider the MTG defined in
Definition 1 and the MSP defined in Definition 10. The global attack strategy
in MSP is a mapping from the state space to the global action space, i.e., πg :
S �→ Δ(Ag). For node v ∈ V, given the MTG Γ v and the local plan profile
Φv = (σv

c , σv
a, σv

d), the global attack strategy is given by

πg(ag | s) = πg(ag = (v, z) | s = v) = τv(z | Φv), ∀z ∈ Zv, (9)

where τv(z | Φv) is the tactic outcome probability as defined in Definition 7.

The global attack strategy in the MTG outlines the cyber kill chain and the
sequence of tactics across the entire system. Rather than focusing on the details
at each local node, the MSP connects all the nodes in the network, offering
a comprehensive risk assessment for the entire system. This holistic approach
allows organizations to better understand the interconnections within their net-
work and the cascading effects of vulnerabilities throughout the system.

2.4 Meta Penetration Game and Playbook

Policy evaluation offers a way to estimate the effectiveness of the global attack
strategy πg in terms of expected cumulative utilities. Similar to traditional
MDPs, policy evaluation of the global attack strategy computes the value func-
tions using the Bellman equations. For all states s ∈ S, the value function under
πg is given by

V πg

(s) =
∑

ag∈Ag

πg(ag | s)
∑

s′∈V
T (s′ | s, ag)

[
R(s, ag, s′) + γV πg

(s′)
]
. (10)

The value at each node in the system describes the expected return starting
from that node and then acting according to the global attack strategy πg. For
the players at the MTG, the utility of each outcome describes the expected
reward of taking that action and moving to the next node in the macro strategy
process. Thus, we define the utility functions in the MTG as follows.
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Fig. 4. Relationship between Macro Strategic Process and Micro Tactic Games. The
local penetration plans in the micro games affect the global attack strategy, while the
policy evaluation at the macro process helps provide the utilities in the micro games.

Definition 12 (MTG Utilities). Given the global attack strategy πg ∈ Πg,
the attacker’s utility functions of reaching outcome z ∈ Zv in the MTG at node
v ∈ V are defined as the

uv
a(z = u) =

∑

s′∈V
T (s′ | s = v, ag = (v, u))

[
R(s, ag, s′) + γV πg

(s′)
]
, (11)

where V πg

is the policy evaluation value function in (10). The defender’s utility
is the opposite of the attacker, i.e., uv

d(z) = −uv
a(z) for all z ∈ Zv.

Figure 4 illustrates the relationship between the MSP and the MTGs. The
MSP defines the global attack strategy, forming an attack kill chain and pro-
viding estimated values for each node through policy evaluation under the cur-
rent strategy. These estimated values represent the expected outcome utilities at
each MTG, guiding the formulation of detailed penetration plans at each node.
The sequence of attack and defense techniques at the local node influences the
global attack strategy in the macro view, emphasizing how lateral movement
is determined by exploration and exploitation. This iterative process continues
until a meta-solution is reached. Together, the MSP and the MTGs constitute
a meta-security game that captures decision-making in penetration testing at
both network and node levels.

Definition 13 (Meta-Security Game). Given the network system graph G =
〈V, E〉, the meta-security game is composed of two parts: Ξ = 〈{Γ v}v∈V , Λg〉,
where {Γ v}v∈V is the set of MTGs as defined in Definition 1 and Λg is the
macro strategy process as defined in Definition 10.
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The MSP and the MTGs are inherently coupled, as the local penetration
plans in the MTGS naturally affect the global attack strategy, while the policy
evaluation at the MSP helps provide the utilities in the MTGs. Hence, a holistic
solution concept is necessary for the proposed meta-security game.

Definition 14 (Meta Penetration Playbook). Consider the meta-security
game Ξ = 〈{Γ v}v∈V , Λg〉 defined in Definition 13, the meta penetration playbook
ξ = 〈{Φv}v∈V , πg〉 is composed of two elements:

• Local Penetration profile: Φv = (σv,∗
a , σv,∗

d , σv
c ) constitutes the local pene-

tration plans of all players for the MTG at node Γ v for each v ∈ V,
• Global Attack Strategy: πg is the global attack strategy in the macro strat-

egy process,

which satisfy two conditions:

• Policy Dependency: The global attack strategy πa at the macro strategy
process depends on the local penetration plans {Φv}v∈V as defined in Defini-
tion 11,

• Value Dependency: For each MTG at node v ∈ V, the utility of each tactic’s
expected outcome depends on the policy evaluation results of global attack
strategy πg according to Definition 12.

In a global view, a complete cyber attack kill chain comprises a sequence of
tactics. The global attack strategy guides how to compose this attack kill chain
within the target system. Within each tactic, there is a sequence of techniques.
The local penetration profile at each node describes the decision-making pro-
cess of the players to complete these technique sequences. The policy and value
dependencies connect the macro and micro solutions, helping us to form an effi-
cient and consistent meta-penetration playbook for the meta-security game.

3 Computation

To determine the optimal meta-penetration playbook, we propose the following
algorithm to find the exact solution. In this section, we use the purple teaming
defense as the penetration scheme and solution concept to describe the computa-
tional process. For other security schemes, the general structure of the algorithm
remains the same, but the method for obtaining the local penetration profile in
each MTG differs (line 7 in Algorithm 1).

To analyze the risks of each node and evaluate the effectiveness of the system
defense, we define the network risk score as a measurement metric. For each node
v ∈ V in the system, we are interested in whether the attacker has access to this
node, and what is the expected damage he can create. Let Vmax ∈ R

+ be the
maximum damage that the attacker could cause. Given the meta-security game
Ξ and the corresponding meta penetration playbook ξ, the network risk score of
node v ∈ V is a normalized risk value Risk(v | ξ) ∈ [0, 1] given by V πg

(v)/Vmax

if V πg

(v) is non-negative; otherwise the score is set to 0.
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Algorithm 1: Purple Teaming Meta Penetration Playbook Algorithm
Input: Meta-security game Ξ = 〈{Γ v}v∈V , Λg〉

1 Set the utilities uv
i in each MTG to arbitrary value;

2 repeat
3 Micro Penetration Profile Computation:
4 For every MTG at v ∈ V, compute the purple teaming penetration

plan profile Φv = (σv,∗
a , σv,pur

d , σv
c );

5 Compute the attack strategy πa under {Φv}v∈V using (9) ;
6 Macro Attack Strategy Evaluation:
7 Compute the value function V πg

of Λg using (10);
8 Update the utilities uv

i in each MTG Γ v;
9 until Meta penetration playbook converges;

Result: Meta penetration playbook ξ = 〈{Φv}v∈V , πg〉.

Table 1. Movement rewards for the attacker in the network.

Web Server User Devices App Server Critical Asset Operation Down Penalty

0 5 20 30 100 −15

4 Case Study

We use the network topology depicted in Fig. 2 as a case study to demonstrate
the effectiveness of MEGA-PT. The system consists of 5 nodes, including the web
server, two user devices, the application server, and the critical asset. The MTG
trees for each node are illustrated in Appendix A. These game trees align with
attack scenarios from the MITRE ATT&CK model and can be adjusted to fit
specific system structures. We evaluate the performance of our model through
numerical experiments conducted in a self-built Python simulator. While the
model’s applicability extends to practical systems given the network topology
and vulnerability trees, the details on how to gather this information are beyond
the scope of this paper.

The penetration testing agent acts as an attacker entering the system from
the external network, starting at the web server. The goal is to penetrate the
system and potentially affect operations at the critical asset. We assume that
there is an artificial node in the network representing a successful compromise
of operations. Once the attacker reaches this node, the penetration process is
considered terminated. In our experiments, we set the parameters as follows:
the immediate rewards for entering each node and the penalty are specified in
Table 1. The attacker’s capability is denoted as ca = 0.8 by default, and we use
γ = 0.9 for the policy evaluation process.

4.1 Optimal Penetration Plan and Purple Teaming

Figure 5 illustrates the value of each node in the network during the meta pene-
tration playbook computation. We consider three types of attackers with differ-
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Fig. 5. Node values under different conditions. The x-axis is the number of iterations
and y-axis is the value of the node for the attacker. We consider both fixed defense and
purple teaming defense against three types of attackers (ca = {0.2, 0.5, 0.8}).

ent capabilities: a weak attacker with ca = 0.2, a median attacker with ca = 0.5,
and a strong attacker with ca = 0.8. In the left column, we test the model
under a fixed defense strategy. Specifically, at the web server, the probability of
the defender granting access is 0.7. At the application server, the probability of
the defender enforcing strict authorization policies is 0.3. Finally, at the critical
asset, the probability of the defender executing the command is 0.6.

The value of each node represents the expected accumulated reward if the
attacker starts penetration from that node. As observed in the figures, when
the attacker is weak, even with a fixed defense strategy, no node in the system
yields a positive reward. However, as the attacker’s capabilities increase, certain
states in the system can provide positive rewards. The stronger the attacker, the
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Fig. 6. Network risk score of the web server under different security schemes.

higher the maximum reward achievable. The potential system damage can be
mitigated by adopting a purple teaming defense strategy. In Fig. 5, the right col-
umn demonstrates that when implementing purple teaming and adjusting the
defense plan, scenarios where the attacker previously gained positive rewards
turn into negative rewards as the strategy converges. The attacker can only
achieve gains when the defense strategy is not yet converged. These results illus-
trate that our model effectively accommodates varying attacker capabilities, and
purple teaming offers enhanced defense capabilities.

Figure 6 shows the network risk score of the web server under different secu-
rity schemes. We consider Vmax = 100 as the maximum damage the attacker
could cause. With a fixed defense, the web server’s network risk score increases
as the attacker’s capability increases. The web server is not risky only when
the attacker is weak, and his capability is low (ca = 0.2). With purple teaming
defense, the web server is safe against all types of attackers, and the network
risk score always remains zero. This indicates that purple teaming defense helps
the system find a defense strategy that can reduce the network risk and prevent
the system from being compromised.

4.2 Vulnerability Adaptability

We consider a scenario where the MTG changes within the network. In this
experiment, we assume a change at the application server where no longer any
information can lead to the critical asset. This change might occur if the system
encrypts this information or restores the database, preventing the attacker from
decrypting or accessing the data related to the critical asset. Consequently, the
MTG at the application server changes, with the only outcome being staying at
the same node after exploration.

We compute the meta penetration playbook under a fixed defense strategy
before and after the local node change:

Before: ξ = 〈Φweb, Φapp, Φuser1, Φuser2, Φasset, πg〉;
After: ξ′ = 〈Φweb, Φapp,′, Φuser1, Φuser2, Φasset, πg,′〉
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Table 2. Global attack strategy πg before
vulnerability change.

web app user user asset final

web 0 0.7 0.3 0 0 0

app 0 0.37 0 0 0.63 0

user 0 0 0 0.5 0.5 0

user 0 0 0.3 0 0.7 0

asset 0 0 0 0 0.4 0.6

final 0 0 0 0 0 1

Table 3. Global attack strategy πg after
vulnerability change.

web app user1 user2 asset final

web 0 0 1 0 0 0

app 0 1 0 0 0 0

user1 0 0 0.5 0.5 0 0

user2 0 0 0.3 0 0.7 0

asset 0 0 0 0 0.4 0.6

final 0 0 0 0 0 1

It can be noticed that in the meta penetration playbook, the vulnerability
change only affects the application server and the global attack strategy, while
the other plans remain the same. This indicates that we only need to recompute
the MTG at that node while retaining the original structure of the other nodes
and updating the global attack policy.

The comparison of global attack strategies before and after this local node
change is illustrated in Table 2 and Table 3. Prior to the vulnerability change, the
attacker from the web server had a high probability (Pr = 0.7) of transferring to
the application server to further attack the system. However, after the change,
since there is no longer a connection between the application server and the crit-
ical asset, our computed penetration plan adjusts its global attack strategy and
no node would transfer to the application server anymore. The attacker would
focus solely on the user devices to find any information that could compromise
the operation. This result demonstrates that MEGA-PT can effectively adapt
to local vulnerability changes.

4.3 Network-Level Scalability

In this scenario, we demonstrate the scalability of MEGA-PT by increasing the
number of user devices within the subnet. We assume that all users share the
same micro tactic tree, and the outcome leads to other users randomly transfer-
ring to another user device in the network with equal probability. Since MEGA-
PT is modular, it allows us to compute each micro tactic tree in parallel. This
means that if users share the same micro game, we can compute one instance and
apply the result to all nodes in the network without recomputation. In contrast,
traditional reinforcement learning-based methods treat each node’s status in the
system as a separate state. As the number of users increases, the state space
grows exponentially, resulting in significantly increased computational time.

From a meta penetration playbook point of view, the network-level scale
change results in the following change in the playbook:

Before: ξ = 〈Φweb, Φapp, Φuser, Φasset, πg〉;
After: ξ′ = 〈Φweb, Φapp, Φuser, Φuser, Φuser, . . ., Φasset, πg,′〉
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Since the user devices are of the same type, each local penetration profile for
the user device is the same. The only updated element in the playbook is the
global attack strategy as it would consider more nodes in the system.

Figure 7 compares the computational time for finding the optimal strategy
between our model and an RL-based model under different numbers of users.
In the RL-based model, the state is the aggregation of all related information
at each node, such as whether the web server has been discovered or whether
the user credential has been found. The transition and reward in the RL-based
model follow the same setting, but the state and transition space are enormous.
We use Q-learning as the learning method under fixed defense and compare the
computational time to find the optimal penetration strategy in the system. It
is evident that as the number of users increases, the computational time for
the RL-based method increases drastically, whereas our method shows minimal
change. These results demonstrate that MEGA-PT scales effectively with large
networks containing similar devices, providing robust scalability.

Fig. 7. Scalability comparison between our model and RL-based model.

5 Conclusion

In this work, we propose MEGA-PT, a meta-game agile penetration testing
model for automated and effective penetration testing. This model features
MTGs for local node interactions and a macro strategy process for network-wide
attack chains. It adheres to the TTPs in real cyber security frameworks, allows
distributed and modularized penetration testing, and adapts to changes at both
local and network levels. Experiments show that using MEGA-PT’s purple team-
ing, the system can find effective defense strategies to reduce the network risk
score of each node. Compared to other RL-based automated penetration test-
ing models, MEGA-PT’s distributed features enable agile adaptation to both
local-level vulnerability changes and network-level topology changes, allowing
effective and scalable penetration testing in large network systems.

For future work, we plan to discuss global defense strategies at the macro
level and explore partial information in the game. MEGA-PT is promising for
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extension to different security schemes and can serve as a foundational framework
for the next generation of automated penetration testing.

A Appendix: Micro Tactic Game Trees

(See Figs. 8, 9 and 10)

Fig. 8. MTG tree at the application server.

Fig. 9. MTG tree at the user device.
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Fig. 10. MTG tree at the critical asset.
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Abstract. The well-worn George Box aphorism “all models are wrong,
but some are useful” is particularly salient in the cybersecurity domain,
where the assumptions built into a model can have substantial financial
or even national security impacts. Computer scientists are often asked to
optimize for worst-case outcomes, and since security is largely focused on
risk mitigation, preparing for the worst-case scenario appears rational.
In this work, we demonstrate that preparing for the worst case rather
than the most probable case may yield suboptimal outcomes for learning
agents. Through the lens of stochastic Bayesian games, we first explore
different attacker knowledge modeling assumptions that impact the use-
fulness of models to cybersecurity practitioners. By considering differ-
ent models of attacker knowledge about the state of the game and a
defender’s hidden information, we find that there is a cost to the defender
for optimizing against the worst case.

1 Introduction

Cybersecurity incidents continue to grow in frequency and volume each year, and
are estimated to cause $8 billion worth of damage in 2023 [6]. While cybersecurity
awareness continues to grow and companies continue to invest in their security
functions, the majority of threat response functions are still carried out manually
by cybersecurity analysts. As a result, there is a move to automate parts of
cyber threat response – something clearly illustrated by the wide availability and
marketing of security orchestration, automation, and response (SOAR) systems.
These systems, however, are largely rule-based – they take some specific action
when some specific criterion is met. This is because SOAR lacks any direct
knowledge of the network system it is responsible for helping defend. We instead
consider the use of attacker simulation to train defensive agents and aim to
answer the question of what assumptions about attacker information should be
made to train the most robust defensive agents.

Abstractions of complex systems generally trade accuracy for tractability
because there is some use in modeling that system in different scenarios. In
cybersecurity, we use modeling to consider potential future states of the system
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we are tasked with defending and how different threats and risks [28] may be
realized. As an additional constraint in cybersecurity modeling, accuracy and
timeliness are constantly in tension. Responding inaccurately to a potentially
malicious event that was triggered by benign behavior can have a significant
cost, but not responding fast enough to a malicious event can be even more
expensive. In the automation of these responses, there is a tendency to optimize
for the worst-case. However, as we know from e.g. linear programming [16], there
are cases where a solution that is worst-case optimal is empirically suboptimal
in practice. Our work seeks to understand the “price of pessimism” – that is,
the cost to a computer network defender for overestimating the knowledge or
capability of an attacker.

While a number of different game types have been used across the security
games space [20,30], a small handful comprise the preeminent models used in the
space – The Bayesian leader-follower game1, the stochastic Bayesian game, and
the two player zero sum game. When training a learning agent for cyberdefense,
decisions about attacker modeling directly impact the policy learned by the
defending agent. We concern ourselves primarily with the two Bayesian game
variants under differing prior knowledge and observability assumptions where the
attacker is an actor who seeks to deploy ransomware across a target network.
While the impact of altering a game’s state or action space is clear and the
implications are well-understood, there are other modeling assumptions that are
often made implicitly. These assumptions are critical parts of the game design
that impact its usefulness to cybersecurity practitioners. In this work, we make
assumptions explicit about the presence of attackers and noise, and consider the
impact of assumptions about attacker knowledge.

Our work begins with a presentation of related work in the field of security
game theory. We then define the stochastic Bayesian game model and setting
we use as an abstraction of attacker-defender interaction on a computer net-
work before presenting a theoretical model of how defender belief about attacker
knowledge is liable to influence their behavior. In this manuscript, we are par-
ticularly interested in the case we deem most realistic – one where the attacker
has limited knowledge of the target network. Our model, being built on partially
observable stochastic Bayesian games which have no known general solution con-
cept [14], requires that we develop a decision theory for the players. To overcome
the limitations of an attacker to optimize against a particular defender, we intro-
duce the use of the restricted Bayes/Hurwicz criterion [11] for decision making
under uncertainty. In order to validate our theoretical findings, we leverage rein-
forcement learning in a YAWNING-TITAN [5] environment modified to allow
attackers and defenders to act as independent learning agents. We leverage the
proximal policy optimization reinforcement learning algorithm of Schulman et
al. [26], an on-policy deep reinforcement learning algorithm with generally good
performance that is used in the default implementation of YAWNING-TITAN2.
We conclude with a discussion of our results and avenues for further work.

1 Also known as the Stackelberg game.
2 https://github.com/dstl/YAWNING-TITAN/tree/main.

https://github.com/dstl/YAWNING-TITAN/tree/main
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Contributions

This work evaluates the “price of pessimism”, a phenomenon wherein the a priori
assumption about an adversary’s knowledge of a system results in a suboptimal
response pattern. In particular, this manuscript contributes the following:

1. For reinforcement learning agents in a stochastic Bayesian game, optimizing
against a worst-case adversary leads to suboptimal policy convergence.

2. Defending agents trained against attacking agents that learn are also highly
capable against algorithmic attackers even when they have not seen those
algorithmic attackers during training.

3. An extension of the YAWNING-TITAN [5] reinforcement learning framework
for training independent attacking and defending agents

4. A novel use of the Bayes-Hurwicz criterion for parameterizing attacker deci-
sion making under uncertainty

2 Related Work

Security game theory is a broad field informed by cybersecurity, decision theory,
and game theory. Recent challenges like CAGE [33] have encouraged development
of models like CybORG [13] and YAWNING-TITAN [5] that use reinforcement
learning to train autonomous agents that defend against cyber attacks. The Ph.D
thesis of Campbell [7] also considers a similar problem space to our work and
leverages the same game theoretic model. These works address a similar prob-
lem space to our work: the development of a defensive agent that disrupts an
adversary while minimizing impact to network users. This paper builds on prior
work by the authors [14] that uses a simple state and action space for Stochas-
tic Bayesian Games (SBG) as introduced by Albrecht and Ramamoorthy [3]. The
partial observability of the proposed SBG relates closely to the work of Tomášek,
Bošanský, and Nguyen [32] on one-sided partially observable stochastic games.
Their work considers sequential attacks on some target and develops scalable algo-
rithms for solving zero-sum security games in this setting and present algorithms
to compute upper and lower value bounds on a subgame. By contrast, our work
seeks to understand how the defender’s beliefs about the attacker impacts the
rewards and outcomes for defenders. Additionally, the aforementioned works and
other related works like Khouzani et al. [17] and Chatterjee et al. [8] consider the
attacker as either a deterministic operator or leverage epidemic modeling tech-
niques to describe an attacker’s movements through a network. Our work here is
unique in the respect that we model the attacker as a learning agent, a phenomenon
more in line with real-world attackers.

The work of Thakoor et al. [31] and subsequent work by Aggarwal et al. [2]
informs our point of view on how attackers respond to risk. In this work, we
implicitly assume bounded rationality and account for risk and uncertainty
within our model. While Thakoor et al. and Aggarwal et al. use cumulative
prospect theory [34] to address deception as a source of uncertainty, we instead
consider it one component of a larger overall framework.
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A key component of this work is the assumptions about information avail-
able to the players. Specifically, the defending player’s beliefs about an attacker’s
knowledge. In the security games context, this dynamic is well-captured by exist-
ing literature on deception and counter-deception [24]. Our work extends this
research area by exploring this dynamic from a game design perspective concern-
ing beliefs defending players hold about the attackers independent of in-game
actions and how that impacts the learning of defensive agents.

3 Modeling Assumptions

Since our work is concerned with modeling assumptions, we aim to make our
own assumptions as explicit and general as possible. We extend the state and
action space used in prior work [14], but operate under the same assumption
that attackers and defenders choose their next action simultaneously at each
time step. We maintain, without loss of generality, that there is a single attacker
and a single defender present in the game.

3.1 State Space

The state space S of this game consists of a network graph G = (V,E), where
each v ∈ V is a defender-owned computer and each edge e ∈ E is a tuple
indicating a network connection between two nodes (u, v);u, v ∈ V . The state of
each machine v ∈ V is a tuple (vp, vα, vδ).

– vp ∈ [0, 1] is the “vulnerability” of a node: the probability that a basic attack
will be successful

– vα = {0, 1} is the “true” state of compromise and is visible only to the
attacker

– vδ = {0, 1} is the defender-visible state of compromise

At each time step, with probability q, an “alert” is generated independent of
attacker or defender action that sets vδ = 1 even if the true compromise state
vα = 0, corresponding to a false positive alert. This phenomenon is justified and
described in further depth in Sect. 3.4.

3.2 Attackers

The attacker’s action space, Aα consists of actions on elements of V subject
to visibility constraints. We define a “compromised” node as a node that the
attacker has gained access to and thus has vα = 1. An “accessible” node is any
node with some edge connecting it to any compromised node. The observable
state space of an attacker, Sα consists of all compromised nodes and all accessible
nodes. The attacker’s action space consists of the following actions, which each
incur some cost c:

– Basic Attack: Compromise an accessible v ∈ V with probability vp.
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– Zero-day Attack: Compromise an accessible v ∈ V as if vp = 1.
– Move: Move from some compromised v ∈ V to another compromised v′ ∈ V
– Do Nothing: Take no action
– Execute: End the game and realize rewards for all compromised v ∈ V

Attacker types inform what exactly their objectives are and may influence the
categories of malware used e.g., coin miner, ransomware, backdoor. Moreover,
the attacker’s type informs the utility function of the attacker and the cost of
each action. For some attacker types, e.g., cybercriminals using ransomware,
there is a clear utility: the ransom paid by the victim. However, other attacker
types may aim to steal private information that is not be directly convertible to
currency. The estimation of these utility functions is thus type-specific, though
any compromised machine will confer nonzero utility to the attacker.

For our purposes, we assume that the attacker is a ransomware attacker and
aims to compromise as many machines as possible and end the game before the
defender can remove them from the system. Assuming unit reward for each node,
this means that for a network of size n, the attacker’s reward at any time if they
take the Execute action or control an attacker-defined percentage of the network
is:

uα =
n∑

i=0

viα −
T∑

t=0

ct

where T is the final timestep of the game and ct is the cost of the action taken
at time t. We note that our reward function in Sect. 5 uses a scaling factor for
the value of viα in lieu of unit value, and that this function also holds in cases
where each node has a different value.

3.3 Defenders

The defender’s action space, Aδ consists of actions on V and E. Although the
defender can take only one action at each time step, they may take that action
on a set of nodes or edges. The defender’s observable space, Sδ consists of the
entirety of E and the number of alerts, vdelta, for all v ∈ V at all times. Specifi-
cally, the defender may:

– Reduce Vulnerability: For some v ∈ V , slightly decrease the probability that
a basic attack will be successful

– Make Node Safe: For some v ∈ V , reduce the probability that a basic attack
will be successful to 0.01

– Restore Node: For some v ∈ V , reset the node to its initial, uncompromised
state, including the probability that a basic attack will be successful

– Scan: With some probability, detect the true compromised status of each
v ∈ V

– Do Nothing: Take no action

The objective of cybersecurity, broadly, is to maintain the confidentiality,
availability, and integrity [4] of a system. The defender’s utility thus arises from
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the availability of resources. Each action has some cost c associated with it,
where the impact of the action being taken on the availability of that resource
on the system dictates c. For example, the Reduce Vulnerability and Make Node
Safe actions are very similar, but the Reduce Vulnerability action incurs a much
smaller cost under default YAWNING-TITAN settings. The defender’s utility uδ

is a fixed-value reward for eliminating the adversary or withstanding the attack
minus the sum of all costs associated with the actions taken during the course
of the game.

3.4 Presence of Noise

Security detections are not infallible, and some number of both false positives
– detections that alert on benign behavior, and false negatives – failures to
detect malicious behavior, must be expected. Attackers are incentivized to and
have adopted techniques like using cloud infrastructure and software as a service
(SaaS) providers to conduct attacks [15] and the use of legitimate executables or
“lolbins” for malicious purposes [19]. Attackers seek to blend in, so detection of
malicious behavior that is similar to benign behavior is important for defenders.
Since there is no way to definitively determine whether or not a program is
malicious, these rules and algorithms yield some number of false positive alerts.
The empirical rate of these false positive alerts, according to surveys, appears to
be somewhere between 20% [27] and 32% [18]. In cases where some number of
alerts are not an indicator of actual attack activity, any probabilistic approach
to network security must grapple with this noise. The security game setting has
modeled this sort of behavior in the realm of deception and counter-deception.
Work by Nguyen and Yadav [23] shows that while attacker payoffs are improved
by deception, learning defenders can reduce the value of this deception.

Assuming that an attacker’s behavior is detected with some probability p,
then there is an independent probability of false positives q. Letting p and q
characterize two independent Bernoulli processes that may each yield an alert, we
can treat the emission of an alert as the joint probability of these two processes.
The probability of an alert occurring at all is thus p + q − pq, as described in
earlier work by the authors [14]. The expected probability that a particular alert
is attributable to benign activity is (1 − p)q. For simplicity, we assume that p
and q are the same across all nodes.

In the absence of the noise assumption, attacker-defender interaction becomes
a game of Cops and Robbers on a graph [29] where a defender can eliminate the
attacker by finding the “cop number” – the number of nodes required to “sur-
round” the attacker and eliminate all of their access at once – for the subgraph
the attacker has explored. This is still an extremely challenging problem, since
even without noise, the defender only has a belief about the extremal edges
of that subgraph and finding the attacker’s possible subgraphs has exponential
complexity. As a result, the importance of an assumption about noise relates
with assumptions about under what circumstances a defender realizes a reward.
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3.5 Presence of Attackers

In non-cooperative game theory, two players are playing a game and each seeks
to optimize against some utility function. This comes, of course, with the implicit
assumption that both players know they are playing a game. In cybersecurity
games, when modeling the beliefs of the defender, we frequently imply that
the defender knows an attacker is present a priori. In reality, attackers are not
always present in our system, and this has a substantial impact on defender
expectations. Clearly, any response taken when an attacker is not present incurs
a cost and yields no reward.

Let μ ∈ [0, 1] be the probability that an attacker is present in a system. If
our game has alert probability p and no noise – that is, q = 0 – then although
we know the probability of an alert is μp, the occurrence of an alert allows us
to set μ = 1 and the defender can directly pursue the attacker as described in
Sect. 3.4. Assuming noise is present in the system, the probability of an alert
occurring at any time step is then

(1 − μ)q + μ(p + q − pq) (1)

In this setting, since an attacker may not be present, the probability of a
false positive event occurring at any time step is

(1 − μ)q + μ(1 − p)q

4 Attacker Knowledge

As one might predict and as was demonstrated in prior work [14], attacker util-
ity increases monotonically with the knowledge available to them. Knowing the
parameters of a simplified game allows defenders to set a threshold of alerts in
expectation – that is, if they know the values of p, q, and μ, they can compute
the number of alerts that might be expected at time t and shut down any system
that has generated more than the threshold number of alerts. However, consid-
ering only the value in expectation can lead to poor outcomes for the defender,
as even for small values of q, any deviation from expectation can lead to sub-
optimal outcomes for the defender e.g. shutting down systems when no attacker
is present. As such, the defender’s threshold for taking an action should instead
be influenced by the level of deviation from their expectation.

As in Sect. 3.5, our per-node expectation of alerts, conditioned on the pres-
ence of an attacker, is (1−μ)q+μ(p+q−pq). The defender establishes some prior
μ and at each time step t, observes some number of alerts across the n nodes of
the network, where n = |V |. The total number of alerts, Al, expected at time t
is therefore nt((1−μ)q +μ(p+ q − pq)), which can be treated as a random sam-
ple drawn from a Beta-binomial distribution. Given Al, the defender performs a
Bayesian update on μ. The posterior distribution of μ is a beta distribution and
so at time t, the defender updates μ as follows:

μt =
∫ 1

0

μα−1
t−1 (1 − μt−1)β−1

B(α, β)
(2)
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where φ = p+ q −pq for brevity, B is the beta function, and α, β are empirically
derived parameters such that:

Al =
α

α + β

V ar[Al] =
αβ

(α + β)2(α + β + 1)

This yields the following for deriving α and β from observed alerts:

α =
(

1 − Al

V ar[Al]
− 1

Al

)
Al2

β = α

(
1
Al

− 1
)

Setting μ = 0, the defender should observe, on average, nq alerts at each
time step. As the defender observes more than nq alerts at each time step,
their confidence that an attacker is present grows. In lieu of simply setting an
alert threshold, the defender sets some threshold for μ according to their risk
tolerance, which may be calculated given the value of the network compared
to costs or given exogenously. Once this empirical posterior estimate of μ is
exceeded, remediation action should be taken.

In the full-knowledge scenario, however, the attacker has access to all of the
defender’s information and can see the threshold for μ. Furthermore, they can
directly compute how an action they will take will update μ and choose an action
in accordance with that update, subject only to the condition that due to the
presence of noise, some triggering event may occur even if they take no action.
Thus, just as in prior work [14], the attacker should take the Execute action to
end the game and collect the current reward when taking any other action may
push μ over the threshold.

4.1 Zero Knowledge

In real-world settings, attackers are unaware of parameters like p and q, so they
cannot ex ante optimize their actions and must instead seek to achieve their goal
by balancing the risk of being caught with the need to achieve their goal. Thus,
the “optimistic”, from the defender’s perspective, zero knowledge setting is the
most consequential for generating real security impacts. In the zero knowledge
setting, the defender is still armed with full knowledge and chooses some thresh-
old for μ to take an action. However, the attacker does not know any of the
parameters of the network and must balance exploration and exploitation given
only the state, as each action they take may alert the defender of their presence.
Given their limited information, they can use the Restricted Bayes/Hurwicz cri-
terion [11] to choose their action.
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Definition 1. The Restricted Bayes/Hurwicz criterion is a procedure for deci-
sion making under uncertainty parameterized by γ and delta defined by:

γP̂ + (1 − γ)[δP̄x∗ + (1 − δ)P
¯ x∗ ] (3)

where γ is the decision-maker’s confidence in their distribution, δ is the coeffi-
cient of pessimism, P̂ is the prior distribution over the decision-maker’s actions,
P̄x∗ is the best case probability distribution over actions, and P

¯ x∗ is the worst
case probability distribution over actions

The attacker has some initial probability distribution P̂ over their actions
indicating the probability they will take an action at a given time step given a
state. The coefficient of pessimism δ corresponds to the attacker’s belief about
the value of μ, which we write μ̂. Due to the limited signal available to the
attacker, the confidence parameter γ should be monotonically decreasing over
time as they observe likely defender actions. For notational simplicity, we set
δ = 1 − μ̂ and write the criterion as follows:

γP̂ + (1 − γ)[(1 − μ̂)P̄x∗ + μ̂P
¯ x∗ ]

At the start of the game, the attacker must estimate the probability of an alert
occurring when they take an action. The attacker knows that false positive alerts
occur and can infer that they need to establish some value that reflects Eq. 1. In
the absence of any information about the defender’s configuration, the attacker
must sample some value φ̂ ∈ [0, 1]. The use of the PERT distribution [9], a
special case of the Beta distribution, is well-motivated from operations research.
We allow the minimum and maximum value in the range [0, 1] and set the b
parameter of the distribution to the midpoint 0.5. The initial value of μ̂ can be
similarly sampled.

When the attacker observes a signal from a defender – that is, when the
defender takes some action on an attacker-controlled node, the attacker updates
their belief about μ̂, and reduces γ, since they are less confident in their initial
distribution over their actions. This update process follows Algorithm 1. In order
to conduct this update, the attacker estimated alert generation probability φ̂ is
used alongside their estimate of the defender’s belief about an attacker’s pres-
ence, μ̂ since the attacker has no knowledge of the number of alerts and must
instead construct a Bayesian estimate Âl given these parameters.

In the full-knowledge case with thresholding, the best response dynamics
are determined exactly by expectation and the parameters of the network [14].
However, this work considers a significantly expanded state space where both
attackers and defenders have a richer action space. In both the full-knowledge
and zero-knowledge case, the attacker’s choice of action depends on the state
and any actions observed from the defender. The zero-knowledge case in partic-
ular is highly dependent on the establishment of good prior distributions. Prior
distributions can be given exogenously or can be learned. In our case, we elect
to learn P̂ , P̄ , P

¯
via simulation. The results of this simulation are described in

Sect. 5.1.
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Algorithm 1. Attacker Parameter Update Algorithm
Require: μ̂ ∈ [0, 1], φ̂ ∈ [0, 1]

k ← 0 � k is the number of observed defender actions
γ ← 1
Âl ← ntμ̂φ̂
V ar[Âl] ← ntμ̂φ̂(1 − φ̂)
while not done do

if defender action observed then
k ← k + 1

α =
(

1−Âl

V ar[Âl]
− 1

Âl

)
Âl

2

β = α
(

1

Âl
− 1

)

γ = γk/(k + 1)

μ̂ =
∫ 1

0

μ̂α−1
k

(1−μ̂k)β−1

B(α,β)

5 Empirical Evaluation

Game theoretic proofs about behavior in cybersecurity environments can pro-
vide powerful tools for thinking about how attacker-defender interaction occurs
in practice. However, they do not always carry over to real-world environments.
To gain empirical insight into the way these assumptions manifest in practice, we
modify the YAWNING-TITAN (YT) framework [5] to include noise and allow
two independent agents – one attacker and one defender – to be trained simulta-
neously. To do this, we create a new multiagent environment with a single state
space where an attacking agent and a defending agent both operate but have
their own separate observation and action spaces. This environment extends
the functionality of YT by providing the ability to treat the attacking agent
as a learner, rather than following a fixed algorithm for determining attacker
actions. Moreover, since our zero-knowledge training case involves training both
an attacker and a defender with different observation spaces, methods like Multi-
Agent DDPG [21] are not suitable, as such methods would disclose hidden infor-
mation about the environment to each agent. Despite issues of known overfitting
to suboptimal policies due to non-stationarity [22], we opt to use two distinct
instances of proximal policy optimization (PPO) [26] – one each for the attacker
and defender – to train our agents, as this the algorithm generally performs well
on a variety of tasks and has been used in prior, related work by others [5].

In this environment, we associate a cost to each attacker and defender action
in accordance with those included in YT, and associate a positive reward for
the agent that “wins” the episode along with a negative reward for the agent
that “loses” the episode. To improve learning, we scale the negative reward for
the defender such that they achieve a lesser negative reward for closer failures.
Specifically, this scaling factor is the number of timesteps that the game has
taken divided by the maximum number of timesteps required for a defender
victory. We find that our defensive agent trained to expect the adversary has
complete knowledge of the system will make worse decisions by overestimat-
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ing the adversary when less information is available. For the sake of evaluating
defensive agents against a programmatic, non-learning attacker, we adapt YT’s
NSARed agent [25], based on a description of cyber attack automation, to work
within our environment. The implementation of the NSARed agent is purely algo-
rithmic – there is no machine learning component – and defensive agents are not
exposed to the agent at training time, making it a stable baseline for compar-
ison. The full code for our training and evaluation implementation is available
on GitHub3.

5.1 Establishment of Priors

The attacker must consider three distributions when playing the game: P̂ , P̄ , P
¯
.

For the “best case” distribution P̄ , we train an attacking agent against a defender
whose only action is to do nothing. For the “worst case” distribution P

¯
, we

train an attacking agent against a defender who has access to both attacker and
defender observation spaces and thus has full-knowledge of the attacker’s moves
and the network. The remainder of this subsection describes the training of the
model P̂ is drawn from.

Our setting assumes an adversary who uses ransomware, where the attacking
player “wins” when they control more than 80% of the network. For each train-
ing episode, we instantiate a random entrypoint for the attacker on a 50-node
network whose edges are randomly generated to ensure the network has 60%
connectivity, and that there are no unconnected nodes. We leverage proximal
policy optimization (PPO) [26] for our learning agents in two settings:

1. Optimistic (zero-knowledge): The attacking agent can see only the nodes they
control and adjacent nodes. They cannot see the vulnerability status of any
nodes.

2. Pessimistic (full-knowledge): the attacking agent has access to the same infor-
mation and observation space as the defending agent.

In accordance with our modeling assumptions, the attacking and defending
player simultaneously decide their moves for timestep t from their action space.
Each agent is trained in either the optimistic or pessimistic environment for 3000
episodes and evaluated for 500 episodes across randomly generated environments
in both the optimistic and pessimistic setting. Based on empirical results from
experiments in the environment, the actor learning rate is set to 0.0002 and the
critic learning rate is set to 0.0005. Higher learning rates were tried and led to
fast convergence to suboptimal policies, as PPO assumes full observability to
achieve globally optimal policies and our environment is only partially observ-
able. Values for all hyperparameters and action costs for both players were fixed
across all settings and are included in Tables 1 and 2.

Evaluating reinforcement learning findings is notoriously difficult. Therefore,
in line with Agarwal et al. [1], we look to more robust measurements that cap-
ture the uncertainty in results. Specifically, in addition to standard evaluation
3 https://github.com/erickgalinkin/pop rocks/.

https://github.com/erickgalinkin/pop_rocks/
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Table 1. Hyperparameter values for rein-
forcement learning experiments.

Parameter Value

Actor Learning Rate 0.0002

Critic Learning Rate 0.0005

Training Epochs 3500

γ 0.99

Update Epochs 5

Batch Size 64

Win Reward 5000

Lose Reward –100

Table 2. Action costs for attackers and
defenders

Attacker Cost Defender Cost

Basic 2 Reduce Vuln 1.5

Zero Day 6 Make Safe 4

Move 0.5 Restore 6

Do Nothing 0 Scan 0.5

Execute 0 Do Nothing 0

Fig. 1. Training reward curves for
attacking and defending agents in the
optimistic setting

Fig. 2. Training reward curves for
attacking and defending agents in the
pessimistic setting

metrics, we consider also score distributions and the interquartile mean across
evaluation runs. These metrics help capture the stochasticity in the task and
normalize our results. Smoothed training curves in the optimistic setting are
shown in Fig. 1; the pessimistic setting is shown in Fig. 2. The average rewards
and interquartile mean for evaluation of the defending agents trained in the opti-
mistic and pessimistic settings achieved each of the two evaluation settings are
shown in Fig. 3 and Fig. 4. Score distributions are captured in Fig. 5.

We observe in Figs. 1 and 2 that the attacker generally starts out with a
poor reward, but learns how to attack the target within 500 epochs. In the
optimistic setting, the defender initially starts out with a very high level of
reward but once the attacker begins winning more often, they must adapt their
strategy, with rewards for both agents converging around epoch 3000. In the
pessimistic setting, the defender similarly starts with a reasonably high reward,
but the attacker quickly learns how to overcome the defender’s strategy. In this
setting, the defender does not rebound and instead settles into a local optimum –
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minimizing the magnitude of loss rather than continuing to explore for a strategy
that eliminates the attacker. Longer runs – up to 10000 training epochs – were
attempted, but the pessimistic defender’s policy in those cases achieved even
worse evaluation results than the defender trained for 3000 epochs. Note that
the reward scale for attackers and defenders is not the same and defenders cannot
achieve the extreme rewards that attackers do.

Fig. 3. Average reward for optimistic and pessimistic trained defending agents across
500 evaluation trials against zero knowledge, full knowledge, and NSARed attackers.

What we find from our evaluation is that the defending agent trained in the
pessimistic setting performs worse on average than the defending agent trained
in the optimistic setting. Across both evaluation settings, the optimistic defender
is more robust in general and performs significantly better on average across all
settings, as we can observe from Figs. 3 and 4. Note that a negative score implies
that the attacker is winning more often than the defender, while a positive score
implies that the defender is winning more often. Each defender performs rela-
tively better in the setting they were trained in and experiences less variance,
as we can see the relative stability between the mean and interquartile mean for
in-domain settings. Interestingly, both optimistic and pessimistic defenders per-
form well against the NSARed attacker, suggesting that training against learning
agents offers substantial benefit over training against more “static” algorithmic
attackers.

The score distributions in Fig. 5 demonstrate the impact of the pessimistic
defender’s convergence. While the optimistic defender has a fairly broad, rela-
tively normal distribution in both settings, the pessimistic defender’s probability
density is highly concentrated just below zero in domain and widely distributed
across highly negative and highly positive out of distribution. This underscores
the robustness of the optimistic defender and indicates that in training, the pes-
simistic defender converges to a policy that expects to achieve a negative reward
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Fig. 4. Interquartile mean reward for optimistic and pessimistic trained defenders
across 500 evaluation trials against zero knowledge, full knowledge, and NSARed attack-
ers.

Fig. 5. Score Distributions for optimistic and pessimistic trained defenders across 500
evaluation trials in zero knowledge and full knowledge settings. Note that the scale of
x and y axes differ between the subfigures.

and seeks to minimize that negative reward, rather than a policy that expects
a positive reward and seeks to maximize it. Since the defender’s win condition
depends on eliminating the attacker or surviving 500 episodes, this “loss mini-
mization” policy leads to suboptimal performance against learning attackers.

To explain the difference in outcomes and what is learned in training, we
can examine the differences in actions taken by the optimistic and pessimistic
defenders. We find that the pessimistic defender agent uses the more expensive
“restore node” action at a higher frequency than the optimistic agent, while the
optimistic agent spends more turns on reducing the vulnerability of nodes and
making nodes safe. This is likely an artifact of the attacker in the pessimistic
setting having access to significantly more information, requiring a more aggres-



The Price of Pessimism 59

sive response to forestall an attacker win. The distribution of action usage for
both agents across all evaluations is shown in Table 3.

Table 3. Percentage of Actions Taken by Defending Agent Across all evaluation
episodes, ordered in ascending cost of the action.

Action Pessimistic Optimistic Difference

Do Nothing 0% 1.4% 1.4%

Scan 3.22% 3.19% 0.03%

Reduce Vulnerability 16.1% 20.68% 4.58%

Make Node Safe 38.83% 41.33% 2.5%

Restore Node 41.85% 33.4% 8.45%

In the interest of ensuring our action costs do not have an undue influence
on our results, we perform our same reinforcement learning evaluation for our
pessimistic setting. We vary two parameters – “connectivity” and “security”
– over the range (0, 1], with a floor of 0.000001 to avoid division by zero. To
establish the robustness of the model, we multiply the cost of each action by the
ratio of connectivity and security such that the importance of security is nearly
zero, the cost of actions becomes very high and when the value of connectivity
is nearly zero, the cost of actions approaches zero, given fixed security value. We
find that there is a nearly linear pattern relating the cost of actions to rewards,
but the learned policy remains stable, provided the relative costs of actions is
fixed and is not degenerate even near extremal values.

5.2 Use of Bayes-Hurwicz Decision Criterion for Attackers

As mentioned in Sect. 4.1, attackers in the real world do not have the luxury
of training their priors to convergence against a target and must combine their
prior knowledge with what is observed during an attack. Since the attacker is
making decisions under uncertainty, some criterion must be used to allow them
to do that subject to their own parameters. Using the pretrained, frozen models
from Sect. 5.1, we consider how the application of the Restricted Bayes/Hurwicz
criterion for the attacker as defined in Eq. 3 impacts the outcomes of the attack-
ing player. Aside from the use of the Restricted Bayes/Hurwicz criterion for the
attackers, all of the defender and environmental evaluation settings remain the
same.

The attacking agent draws independent prior μ̂ and φ̂ values from PERT
distributions in accordance with Algorithm 1 at the start of each round and
updates their μ̂ at each timestep if defender activity is observed – that is, if the
defender takes an action that removes access to an attacker controlled node. For
each evaluation scenario, the relevant trained attacker model – zero knowledge
or full knowledge – is used to establish P̂ , P̄ , and P

¯
for the observed state of
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the game. Specifically, each policy model π̂, π̄, π
¯

accepts an attacker-observed
state St and outputs a distribution over the attacker’s action space Aα such
that π̂(St) ∼ P̂ , π̄(St) ∼ P̄ , and π

¯
(St) ∼ P

¯
. The attacker leverages these model

outputs and the values of μ̂, and γ with Eq. 3 to determine their next best action.
Interquartile mean evaluation rewards for the attacker, shown in Fig. 6, illus-

trate the impact of restricted Bayes/Hurwicz. Against the optimistic defender,
the use of restricted Bayes/Hurwicz yields marginally worse performance for the
zero-knowledge (in-domain) attacker, but marginally better performance for the
full-knowledge (out-of-domain) attacker. Against the pessimistic defender, the
pure zero-knowledge attacker performs incredibly well, and using Bayes/Hurwicz

Fig. 6. Interquartile mean reward for attacking players across 500 evaluation trials
against both optimistic and pessimistic defenders

Fig. 7. Interquartile mean reward for optimistic and pessimistic defenders across 500
evaluation trials against all attacker types.
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somewhat negatively impacts the attacker’s interquartile mean reward. While
the full-knowledge (in-domain) attacker performs worse overall against the pes-
simistic defender, the pure strategy is better than using Bayes-Hurwicz, as we
would expect (Fig. 8).

Fig. 8. Score distributions for optimistic and pessimistic defenders against base and
restricted Bayes/Hurwicz attackers in full-knowledge and zero-knowledge settings. Note
that the scale of x and y axes differ among the subfigures.

Results for defenders against both base attackers and those using restricted
Bayes/Hurwicz are shown in Fig. 7, and reflect the information from Fig. 4. The
optimistic defender experiences a marginal improvement against the restricted
Bayes/Hurwicz attackers in both the zero knowledge and full knowledge
case. Meanwhile, the pessimistic defender performs slightly better against the
restricted Bayes/Hurwicz attacker in the full knowledge (in-domain) case, but
significantly worse against the restricted Bayes/Hurwicz attacker in the zero
knowledge (out-of-domain) case.
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6 Conclusion and Future Work

The game design assumptions made about an attacker’s capabilities and knowl-
edge grow increasingly important as we seek to develop improved mitigation
capabilities for cyber defenders. In this work, we have demonstrated a phe-
nomenon we call “the price of pessimism” – the cost incurred by a defender by
assuming a more pessimistic view of what an attacker is likely to know. Practi-
cally, this suggests that the development of defensive agents necessitates careful
consideration of what real-world attackers are likely to know, and model those
assumptions correctly. Specifically, assumptions made about attacker knowledge
considerably influence what defenders learn and the efficacy of their response. In
future work, we aim to define more precisely how environmental factors should
be determined and the impact of per-node and subnet variability of true and
false positive alert rates on both attacker and defender performance.

Our results demonstrate that a defender’s assumptions about a priori
attacker knowledge of an environment have a measurable impact on how that
defender responds to potential intrusions. An assumption that overestimates
an attacker’s knowledge and the concomitant learned response dynamics from
this assumption leads to overreaction to false positives on the part of defending
agents, incurring unnecessary costs and leading to poor convergence in reinforce-
ment learning settings. We conclude that future work in this space seeking to
have impact on systems in the real world should account for the likely knowledge
and learning dynamics of attackers in addition to those of defenders and should
aim to more accurately capture the learning behavior of attackers.

In future work, we aim to apply these findings to automated threat response
by incorporating human factors, threat modeling, and using more complex simu-
lation frameworks. Although our agents are learning agents, attacks both today
and in the foreseeable future are conducted not by pure utility maximizing
agents, but by human beings. As a result, we look to incorporate prospect the-
ory [34] in future work similar to how such models have been used to align
large language models [12]. We also aim to explore how incorporating threat
intelligence information about sequences of attacker actions and how they lead
to different outcomes can constrain the defender’s action space, allowing for
threat-informed defense. Finally, given the restricted node states of the YT rein-
forcement learning environment, research incorporating threat intelligence may
need to leverage a simulation framework more similar to real-world environments,
like CybORG [10].
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Abstract. A ransomware game involves a ransomware attacker A and
a victim V deciding to cooperate or not. The victim may or may not
trust the ransomware attacker to unlock files after paying the ransom to
prevent data loss. Simultaneously, the attacker can strategically decide
whether or not to unlock the files after receiving payment. This can
be modelled as a strategic game, repeated over time. In addition, the
attacker may change their mind at any point and stop the game. Like-
wise, the victim, at any time, might become incapable of playing by being
bankrupt, or uninterested by having established recovery and resilience.
We develop a novel stochastic game-theoretic model for analysing this
scenario and provide equilibria for a single victim and multiple victims.
We also study convergence towards equilibria from mutual experience
collected by victims and the attacker and compare the equilibrium limits
of the model with recommendations from real-life reported experience.

1 Introduction

Ransomware has been an increasingly prolific and impactful cyber attack in
recent years. Organisations are facing the difficult decision of whether to give in
to ransom payment demands or refuse to cooperate. On the other hand, cyber-
criminals weigh the advantages and disadvantages of attempting to convey a
reliable reputation [10,11,35], hence increasing the chances of obtaining pay-
ments in future ransom attacks by consistently restoring encrypted data after
ransom payment [37]. Game theory can help to understand better this strategic
decision-making scenario by analysing the motivations underlying the behaviour
of the ransom attackers and their victims.

Ransomware attacks may repeat over several users or even a single victim,
but eventually will need to stop at some point for several possible reasons. Among
them is the adversary having gained its payment and thus lost interest in the
victim, or in a worse case, the victim is either unable to pay or bankrupt after
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having paid (in case the data is not unlocked afterwards or recoverable). Both
possibilities, among others, bear a strategic decision for the players to “stop”
the game at some point, and a game theoretic model should thus include such
a choice point. On a high level, we do so by letting the process be a random
variable Xt that captures the cash flow from the victim to the adversary due
to a ransomware attack at time t. The random payment Xt is determined by
a strategic interaction in which both players follow their equilibrium strategies.
“Stopping” the game then means stopping the respective stochastic process by
considering another random variable

Zt :=

{
Xt if t ≤ T,

XT if t > T.

This expresses that after one of the players drops out at the (random) time T ,
the state of both players remains at the outcome of the last round of the game
(e.g., the attacker may have won a ransom, the victim could be unable to pay
further, or, in a best case, could have recovered from a backup and fixed its
vulnerability without having paid anything).

If both players decide to stop purely on retrospective considerations, mean-
ing that the stopping decision is not made anticipating the future, then T is a
stopping time (formally, this means that the random variable T only depends on
X0, . . . , XT−1, but is independent of XT+1,XT+2, . . .). Adopting this hypothesis
for the game model makes the stopped process a martingale. We can apply the
optimal stopping theorem [38, pg. 67] after observing that (i) the expected time
to stop is finite, E(T ) < ∞ (since the adversary may chose to go arbitrarily
long, but eventually will at some point need to stop), and (ii) the expected gains
per round are also finite, meaning E(|Xt+1 − Xt| | X0, . . . , Xt−1) < c for some
constant c > 0. Since the game will have continuous payoffs on compact action
spaces, the finiteness of payoffs and their differences is assured.

Under these assumptions, the expected gains at time T equal the expected
gain in the first round, E(XT ) = E(X0). This means that, without loss of gener-
ality, the analysis of a ransomware attack that may repeat several times until it
finishes at a finite but random time T , boils down to considering a single stage
game that describes the interaction only in a single instance. The accumulated
reward for the attacker upon repetition, by Wald’s identity (that holds under the
same conditions) then merely come to E(X0 + X1 + . . . + XT ) = E(T ) · E(X0),
leaving the average, i.e., equilibrium payoff E(X0), as the fundamental quan-
tity to study next. Later, towards some generality, we will extend the setting
to multiple victims (that may even cooperate by sharing experience about their
common adversary).

The contributions of this paper are the following: We devise a flexible two-
player, non-zero-sum stochastic stopping game framework for modelling ran-
somware scenarios informed by attacker, victim, and mixed personality profiles
using birational games, defined in Sect. 3. To the best of our knowledge, this is
the first time such a systematic stochastic game framework has been presented
and applied to the ransomware scenario. A stationary equilibrium analysis of the
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game is provided, and sufficient conditions for pure or mixed Nash equilibria are
given for various personality profiles. In particular, the presence of mixed equi-
libria is discussed. We then focus on the bimatrix stage game and extend it to a
multiple-victim scenario, prove that equilibrium solutions can be found through
an online learning process based on extending the Fictitious Play (FP) algorithm
to 2 × n birational games with a common rank-1 denominator, and provide an
illustrative evaluation of this process.

Throughout the paper, we denote the matrix E (the vector e) consisting of
all entries set to one, ei denotes the ith unit vector, and O denotes the zero
matrix, with sizes inferred from context. A bimatrix game Γ (A,B) involves two
players where the first plays row actions and the second plays column actions.
Strategies for the first and second players are denoted by x and y, respectively,
and a strategy profile is represented as (x,y). A Nash equilibrium (NE) strategy
is (x∗,y∗). The corresponding game value is denoted by v = (vx, vy). We let
players as calligraphic letters like V (for the “victim”), and let the corresponding
latin letter denote the payoff structure of this entity (e.g., V for the player V).
For a matrix S, the symbol S > 0 is to be understood as the inequality holding
per element. A similar definition holds for S ≥ 0, with S �= O assumed. Matrix
pencils are expressions of the form A − λB. A matrix pencil A − λB is called
regular if both matrices A and B are square of size n and the polynomial f(λ) =
det(A − λB) is non-zero, meaning f(λ) �≡ 0. Finding left (right respectively)
generalised eigenvectors of a regular matrix pencil for a finite eigenvalue μ means
finding non-zero solutions of x�(A − μB) = 0 (respectively (A − μB)y = 0),
where f(μ) = 0.

The remainder of the paper is organised as follows: We relate our work to
other results in Sect. 2. Section 3 introduces some definitions and preliminary
materials. Section 4 describes the game model for a single stage of a ransom
attack, giving the expectation E(X0) from above, besides the likewise quantity
for the other player. We provide equilibrium results (also in the multi-victim
case), online learning of best behaviour in this section, and a comparison to offi-
cial recommendations of security agencies about ransomware. Section 5 compares
the model results against real-life reports, and conclusions are drawn in Sect. 6.
The appendix provides technical details (proofs) behind the results developed
along the main body of the paper.

2 Related Work

Pioneering work on applying game theory to a ransomware scenario involving
multiple defending organisations and a ransom attacker was [18]. This paper was
motivated by understanding the impact of economic incentives within an organ-
isation on management decisions for investment in backups and willingness to
pay the ransom. The game, a multi-stage, multi-defender security game, com-
bines insight from security games and economic considerations and raises further
questions: the idea of penalise organisations paying ransoms might be unethi-
cal, for example, in a healthcare setting. Another early paper for game-theoretic
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approaches for ransomware scenarios [8] was inspired by work on game models
for kidnapping [15,17,33]. These games are sequential, two-player games with
parameters representing various probabilities, such as outcomes of negotiating
the ransom fee, the occurrence of deception by the kidnapper, or the likelihood of
arrest by the police. The paper is based on the insight that the decision-making
processes behind a ransomware attacker and victim scenario are similar to those
in the kidnapping games, reflected in the resulting game models. Several crucial
issues emerge: negotiating an optimal ransom, the trust in the attacker to release
the data upon payment, the idea that the attacker might want to establish some
form of “brand”, and the challenge of setting up suitable proactive controls. An
interesting aspect, the “spillover” effect, relates to the fact that different types
of victims are willing to spend different amounts in deterrence, such as backups,
hence creating uncertainty for the attacker, which could be seen as an advantage
for other subsequent victims. This is a point in common with [18] but approached
differently in the two papers.

Modern ransomware attackers increasingly employ diverse hostile strategies,
such as threatening to publish the captured data publicly on the internet or
selling it off to the black market. This aspect was explored in a series of papers
on “Ransomware 2.0” [19–21] through a finite multi-stage game model. An addi-
tional preventative measure based on deception was devised and analysed with
the model of [21]. Extensive simulations are provided to evaluate the result-
ing equilibrium payoffs, depending on their decision input parameters. The
papers [2–4] embed ransom attacks in the wider network security framework of
Advanced Persistent Threats (APTs). While the scope of the developed models
is broader, with the vision of a global framework, aiding the response to large-
scale ransom attacks orchestrated by entire hostile organisations or nations, the
essentials of the model remained the same, centred around the decision-making
involved between paying the ransom or not, and the attacker releasing the data
after payment, or to deceive by failing to do so. An extended game theoretic
analysis of ransomware was developed in [39], where the Attacker-Defender (A-
D) game between ransom attacker and victim is complemented by a Defender-
Insurer (D-I) game. While the A-D game is similar to previous models, the D-I
game models the attacker as a non-strategic third party. Solutions are provided
as empirical outcomes due to the complexity of the model. While this approach is
innovative, it also has drawbacks due to the restricted interaction level between
the two game players. Further refining previous multi-stage ransomware games,
the authors in [40] analyse the decision-making in the different stages of an attack
based on four subgames: data backup, ransomware development, compromise
and data release stages. This framework introduces many parameters, allowing
a detailed game customisation for realistic scenarios. The works of [5,14] also
divide the attack into different (similiar) stages for an optimal attack/defense
orchestration.

In summary, while none of the papers can answer all relevant questions simul-
taneously, they draw a reasonably comprehensive picture jointly. In our work,
we are interested in further investigating the following key aspects:
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First, previous models were not all focused on stochastic games. In reality,
ransomware attacks may occur repeatedly and certainly will if we consider a
generic victim. We are interested in what can be said about the strategic prefer-
ences of the two players, their stopping probabilities, and the consequences for
the resulting game analysis.

Second, we are interested in a learning process where the user group pools
knowledge and experience about security threats and countermeasures (threat
intelligence) over time and tackles how a possible collaboration and learning of
victims against the attacker affects the attack model. We study a first simple
setting in which the user group faces the attacker individually but optimizes a
joint loss to model cooperation among the group.

3 Definitions and Preliminaries

Since our model will rely on games with particular rational functions as utilities,
we review a few technical results, the proofs of which are given in Appendix A.

Denote Γ (A,B,C,D) a general birational game, which is a bimatrix game
with rational payoff functions. The payoffs to Player 1 and Player 2 using the
strategies (x,y) are defined as uA(x,y) = x�Ay

x�Cy
, and uB(x,y) = x�By

x�Dy
with

C,D > 0, where the inequality holds per element. Letting x,y range over all
(discrete) probability distributions, we have x�Cy �= 0 and x�Dy �= 0 for all
admissible x,y, and hence the quotients are always well-defined. Hence, uA and
uB are both continuous functions over a compact strategy set (a closed subset
of the Euclidean space), and Glicksberg’s theorem [13] assures the existence of
an equilibrium.

Definition 1. A Nash Equilibrium strategy (x∗,y∗) of a bimatrix game with
rational payoff functions satisfies vx = x∗�Ay∗

x∗�Cy∗ ≥ x�Ay∗

x�Cy∗ ∀x and vy = x∗�By∗

x∗�Dy∗ ≥
x∗�By
x∗�Dy

∀y. We say that (x∗,y∗) is a Nash equilibrium and that v = (vx, vy) is
the corresponding game value profile.

3.1 Nash Equilibria in Birational Games

The class of birational games was originally defined in [22] as n-player games with
rational payoff functions and proven to possess an equilibrium point. For n = 2,
the authors in [23] introduce the terminology of birational games and investigate
mechanism design approaches for completely mixed solutions (similarly, but for
the zero-sum game case, [30] give a construction of matrix games with any pre-
desired set of Nash equilibria). Our interest in this class of games roots in the
possibility of characterizing equilibria by generalized eigenvalues (Proposition
1). As in bimatrix games, pure best responses and equilibrium solutions satisfy
the “principle of indifference” in a birational game.

Lemma 1. If Player 1’s mixed strategy x is a best response to the (mixed)
strategy y of the other player, then, for each pure strategy ei such that xi > 0, it
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must be the case that ei is itself a best response. In particular, the payoff eiAy
must be the same for all such strategies.

An analogous fact can be stated for Player 2, for a best response y to x, and B.
Since ei

�A is the ith row of A, an immediate consequence of Lemma 1 is

ei
�Ay

ei
�Cy

= vx ⇐⇒ ei
�(A − vxC)y = 0.

Furthermore, we can combine these equations in vector form as (A−vxC)y = 0.
From this, we obtain the following proposition, which states an alternative

definition of equilibrium solutions of a birational game.

Proposition 1. For the birational game Γ (A,B,C,D), an equivalent formu-
lation for a Nash Equilibrium strategy (x∗,y∗) with values vx, vy is as fol-
lows: define vy as the greatest value such that there is x∗ ≥ 0 satisfying
x∗(B − vyD) ≤ 0. Similarly, define vx as the greatest value such that there
is y∗ ≥ 0 and (A − vxC)y∗ ≤ 0.

This formulation extends the classical von Neumann economic growth model
[28] to a non-zero-sum setting. Compared to that of Definition 1, the advantage
of this above representation is that it provides a somewhat more convenient
definition of equilibrium and potentially an easier equilibrium analysis of the
game.

Define a normalised vector as one whose components add up to one. The
following theorem uses linear algebra concepts to give a sufficient condition for
a Nash equilibrium solution of a birational game, extending Theorem 2 in [29].
Its proof can be done very similarly.

Theorem 1. Given the birational game Γ (A,B,C,D), assume the matrix pen-
cils A− λC and B− λD are both regular. For each pencil, assume it has a real
finite eigenvalue α and β, respectively. Furthermore, assume that there exists a
normalised nonnegative left eigenvector x with x(B−βD) = 0 and a normalised
nonnegative right eigenvector y satisfying (A−αC)y = 0. Then (x,y) is a Nash
equilibrium of the birational game, and (α, β) are the corresponding game values.

3.2 Birational Games with Common Rank-1 Denominator

Birational games were previously used in [29] in the context of stochastic games,
and this focus continues in this paper. In this section, we consider birational
games with a common rank-1 denominator. We will show that if the utility
functions have a common denominator matrix C > 0 of rank 1, in which case
we abbreviate it as Γ (A,B,C), then equilibria are computable by solving a
conventional bimatrix game. Hence, one can “clear” the denominator and replace
the birational game with a bimatrix game for such payoff functions.

Theorem 2. Consider the n × m birational game Γ (A,B,C) with common
denominator matrix C > 0 and rank (C) = 1. Then there exist real pi, qj > 0
(i = 1, . . . , m; j = 1, . . . n) such that the bimatrix game Γ̃ (Ã, B̃) where Ã =
((ãij)) and B̃ = (b̃ij)) with ãij = aij

piqj
and b̃ij = bij

piqj
has the following properties:
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(i) There is a one-to-one correspondence between the equilibrium solutions of the
birational game Γ and those of the bimatrix game Γ̃ .

(ii) Corresponding equilibrium solutions have the same game values.

4 The Two-Player Ransom Roulette Game

In this section, the two-player ransom roulette game is introduced. We describe
the general game model and analyse several instances of games with various
aspects, suitable for specific ransomware scenarios.

4.1 Game Definition

The two-player ransom roulette game is a stochastic bimatrix stopping game
Γ (V,A,S), defined by a matrix triple consisting of payoff matrices A,B and a
stopping matrix S, defined by

V =
(−cp −cp − c�

0 −c�

)
, A =

(
br − cd br

−cd 0

)
and S =

(
s11 s12
s21 s22

)
.

This defines the utility functions

uV(x,y) :=
x�Vy
x�Sy

and uA(x,y) :=
x�Ay
x�Sy

, (1)

which shows that Γ is a birational game with common denominator S.

Fig. 1. Parameters and their assumptions in the utility functions for the two-player
ransom roulette stopping game Γ (V,A,S).

Figure 1 summarises the different parameters occurring in the matrices V, A
and S and the assumptions made about them. The generic formulation of the
utilities via (1) is flexible, and specific choices for the stopping matrix lead to
pertinent cases of interest for this paper. The cases discussed in the sequel are
the following: (i) stage game (Sect. 4.2): all of the si are equal to one (S = E),
(ii) stopping game (Sect. 4.3): a stopping matrix S > 0 with all strictly positive
elements, and in Sect. 5 we will investigate (iii) the online learning of equilibria.
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4.2 Stage Game

We put S = E to model a single-shot ransomware game R0, where a ransomware
attacker A and a victim V need to decide whether to cooperate or not. Before
they pay to prevent permanent data loss, the victim must decide whether they
can trust the ransomware attacker to unlock the files upon ransom payment.
On the other hand, the attacker is weighing up whether they should invest in
unlocking the files once payment has been received or whether they keep them
encrypted. We can model the situation as a bimatrix game. By inspecting the

Fig. 2. The ransomware roulette bimatrix stage game R0.

players’ best responses, Assumptions (A1)–(A3) and the classification in [26,
Table 1], we obtain immediately:

Proposition 2. The stage game R0 := Γ (V,A,E) defined as in Fig. 2 has
exactly one pure Nash equilibrium (not pay, keep locked). The game is strategi-
cally equivalent to a zero-sum game.

While being a simple game, it nevertheless contains the relevant decision sce-
narios reported in previous work, and the Proposition is consistent with advice
normally issued by cyber security advisory boards such as UK’s NCSC [27].

4.3 Stopping Game

Now, we allow both players to drop out at any time (for any reason) from the
game, which amounts to using a stopping matrix S > 0 with S �= E. Further, we
let the choice of stopping be made independently by both players (conversely, we
do not assume that they will seek a mutual consensus to stop, but rather decide
this for or against the opponent’s will). This game may have many equilibrium
solutions, both pure and mixed. To identify meaningful and insightful solutions,
we will introduce the idea of personality profiles reflected in the design of the
stopping matrix. Based on the player’s specific personality profiles, we propose
corresponding stopping matrices and analyse the impact on the equilibrium solu-
tions. Some sufficient conditions for the existence of equilibrium solutions follow
this.

A personality profile can help explain the reasons behind a player’s design
of their stopping probabilities. Repeating the game might alter the overall (sta-
tionary) equilibrium compared to that of the stage game. In our ransom roulette
game, either of the players might decide on their stopping probabilities depend-
ing on how satisfied they are with the (not pay, keep locked) pure NE. Preferences
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for cooperative or non-cooperative behaviour by one player that are independent
of the strategic decisions of the other player yield stopping matrices of a special
form. As explained in the sequel, these matrices have the algebraic rank one
property.

Attacker Profile. Here, we consider a ransom attacker’s preferences indepen-
dent of the victim’s strategic decisions. This leads to a stopping matrix of
the form

S =
(

α1 α2

α1 α2

)
.

One profile can be modelled with stopping probabilities 0 < α1 < α2 ≤ 1,
indicating a higher preference to continue the game when data was unlocked.
The attacker might be interested in his “business model” functioning well when
returning data to the victims in exchange for the ransom payment. On the other
hand, in a scenario where unlocking data happens despite the victim not paying,
this preference seems less realistic. Another profile can be modelled with stopping
probabilities 0 < α2 < α1 ≤ 1. This indicates a preference to continue the game
when data was not unlocked. This attacker could be described as greedy, or also
as risk-taking, as they plan to continue betrayal, ignoring the potential loss of
reputation of their specific ransomware as a “brand”. But if the ransom was
not paid, this profile could also indicate a persevering attacker assuming better
future outcomes when they do obtain a ransom.

Victim Profile. For this profile, the counterpart of the previous one, the stop-
ping probabilities of the victim are independent of the attacker’s actions. This
is expressed by

S =
(

β1 β1

β2 β2

)
.

Several personality traits might be relevant when analysing the victim player.
These traits can be grouped into two categories: the informed or cautious victim
and the victim acting somewhat unprofessionally. A ransomware victim could
act responsively and be aware of guidelines issued by national cyber agencies or
citizen advice bureaus, who usually recommend not to pay the ransom. They
could also decide not to pay as they mistrust the ransom attacker to unlock
their files upon receipt of payment. This scenario can be modelled by 0 < β2 <
β1 ≤ 1. On the other hand, the victim may be tempted to pay the ransom. This
could be rooted in several reasons. They could be emotionally distressed by the
prospect of losing their data; they could be impulsive or otherwise emotionally
caught up in the experience of being attacked, which we could see as a somewhat
unprofessional personality. This leads to 0 < β1 < β2 ≤ 1 for the stopping
probabilities.

Mixed Rank-1 Profile. In this game, both previous profiles are combined
non-cooperatively. The rank-1 condition for S, as introduced in [29], implies a
representation as dyadic product with a rank-factorised matrix

S =
(

α1β1 α2β1

α1β2 α2β2

)
=

(
β1

β2

) (
α1 α2

)
.
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We obtain the following equilibrium analysis of these games: for the attacker
and victim profile, there is a pure Nash equilibrium which is identical to that
of the stage game under certain conditions. However this can be different in the
mixed profile.

Theorem 3. For the ransom roulette stopping game with either attacker, victim
or mixed profils and payoffs as in (1), the following holds:

(i) For the attacker profile, the game admits the same Nash equilibrium as the
stage game: the pure equilibrium (do not pay, keep locked).

(ii) For the victim profile, if β1
β2

< 1+ cp

c�
, there is also the pure NE (do not pay,

keep locked). If β1
β2

> 1 + cp

c�
, there is the pure NE (pay, keep locked).

(iii) For the mixed profile, if α1
α2

< 1 − cd

br
and β1

β2
> 1 + cp

c�
, there is a mixed

equilibrium.

Proof. By Theorem 2, the equilibrium solutions of the stopping game with stop-
ping matrices as specified for the three different profiles can be obtained from
those of an associated bimatrix game Γ (Ṽ, Ã, S̃), constructed now.

Let us fix (x∗,y∗), an equilibrium solution of the birational game satisfying,
by Proposition 1, (V − vxS)y∗ ≤ 0 and x∗(A − vyS) ≤ 0. We will use the
rank-factorisation of the stopping matrix to obtain(

V − vx

(
β1

β2

)
(α1 α2)

)
y∗ ≤ 0 ⇐⇒

(
Ṽ − vxE

)
ỹ∗ ≤ 0

where the transformed variables are

Ṽ =
(

β−1
1 0
0 β−1

2

)
V

(
α−1
1 0
0 α−1

2

)
, ỹ∗ =

(
α1 0
0 α2

)
y∗.

Similarly, for x∗, we have

x∗�
(
A − vy

(
β1

β2

)
(α1 α2)

)
≤ 0 ⇐⇒ x̃∗�

(
Ã − vyE

)
≤ 0

with the transformations

Ã =
(

β−1
1 0
0 β−1

2

)
A

(
α−1
1 0
0 α−1

2

)
, x̃∗ = x∗

(
α1 0
0 α2

)
.

The computation of an equilibrium in the game with mixed stopping profiles is
thus reducible to a solution of the (simpler) stage game. The required solutions
are obtained as solutions of the bimatrix game (Fig. 3) Γ (Ṽ, Ã,E), transformed
back.

Inspecting the payoff structure, we can see that crucial conditions for the
existence of pure and mixed NEs is the relative ordering of the terms δ1 =
(br − cd)/(α1β1), δ2 = br/(α2β1), δ3 = −(cp + cl)/(α2β1) and δ4 = −cl/(α2β2).
Based on the assumptions in the individual cases, we have for (i) that δ3 < δ4,
for (ii) δ1 < δ2 and either δ3 < δ4 or δ3 > δ4 and finally for (iii) that δ1 > δ2
and δ3 > δ4.
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Fig. 3. Associated bimatrix game for stopping game with mixed profile.

For the mixed profile, with conditions (iii) satisfied, the mixed equilibria can
be computed in closed form by computing generalized eigenvalues and eigen-
vectors, e.g. in a computer algebra system such as Maxima [16]1. This yields:

Theorem 4. For the mixed profile, if condition (iii) in Theorem 3 holds, the
mixed equilibrium is of the form (x∗,y∗) where

x∗ =
1

(α2 − α1)br

(
α2cd, −α2cd + (α2 − α1)br

)
and

y∗ =
1

(β1 − β2)c�

(
(β1 − β2)c� − β2cp

β2cp

)
with associated game values

vV =
c�cp

α1(β2 − β1)c� + (α1 − α2)β2cp
, vA =

cdbr

α2(β1 − β2)cd + (α2 − α1)β2br
.

4.4 One-to-Many Extended Game: Learning Solutions

Let us now set up the game as one between a single attacker and multiple victims
that all interact bilaterally with the attacker and may collude as a team in the
sense of cooperative game theory. In each bilateral game, the payoffs for the
attacker A and the i-th victim V(i) (for i = 1, 2, . . . , n) are given as in Fig. 2
with the additional superscript i.

Where we allow individually different parameters c
(i)
p , b

(i)
p , c

(i)
d and c

(i)
� , con-

strained only to make the game non-degenerate [6], meaning that if either player
chooses a pure strategy, then there is a unique best response to it. It is a quick
matter to check all four cases to verify the game as non-degenerate if cd > 0 and
cp > 0 for all players, where we drop the “(i)” annotation here to simplify the
notation (it needs to hold for all i anyway):

With the adversary being Player 0, and its victims enumerated as set V =
{V1, . . . ,Vn}, the resulting (n+1)-game is of “one-against-all” type, also called a
compound game [32]. While it directly follows from the classical existence result
of Nash equilibria that this game will have an equilibrium, the practical question
is whether this equilibrium will also naturally arise between the attacker and its
victims. The convergence of FP in the one-against-all setting has been studied
in [32], providing the following result as a tool:
1 An implementation is available at https://github.com/epfluegel/sigma.

https://github.com/epfluegel/sigma
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Table 1. Non-degeneracy of the bilateral games

player and strategy payoff case 1 payoff case 2 maximum

V plays “pay” bp − cd bp bp, since cd > 0

V plays “not pay” −cd 0 0, since cd > 0

A plays “unlock” −cp 0 0, since cp > 0

A plays “keep locked” −cp − c� −c� −c�, since cp > 0

Proposition 3 ([32], Prop. 3). Let the compound game have players
{0, 1, . . . , n}, with strategy spaces AS0, AS1, . . . , ASn, and payoffs u0 : AS0 ×∏n

i=1 ASi → R for Player 0, and ui : AS0 × ASi → R for the players
i = 1, 2, . . . , n.

A fictitious play process approaches equilibrium in a compound game Γc if
and only if it approaches equilibrium in its reduced game Γr, which is a two-
player game between Player 0 from Γc and a “collective” Player V (a set of
entities) comprising the Players 1, . . . , n from Γc, and with payoffs in Γr defined
as v0(x0,x−0) := u0(x0,x−0) and vV (x0, x1, . . . , xn) =

∑n
i=1 ui(x0, xi) for all

x0 ∈ AS0, xi ∈ ASi for all i.

Since the payoff to the attacker is likewise the total of all that it collects
from the victim group, the utility function v0 in the compound game is just
the respective sum of the payoff matrices (Fig. 2) over all players. The reduced
game is then a 2 × K bimatrix game with K = 2n, whose convergence under
fictitious play was studied by Berger [6] and shown to hold under the above
non-degeneracy condition2.

Proposition 3 allows us to reduce the case of many victims to the case of
a single “joint” victim whose loss is the total of what the adversary gets by
the ransomware attack. Its construction, however, is such that the victim group
acts jointly by pooling their losses, i.e., the victims share their experience and
adapt to the benefit of the entire group (e.g., paying the ransom if the data
becomes unlocked, or refusing to pay if experience tells that the data will not
be unlocked anyway), such a group’s response to the ransomware attacker is a
form of fictitious play. This is almost like in cooperative game theory, with the
difference only in the fact that the victims will not share their losses subsequently.
A form of group rationality still exists since it is in the victim’s interest to benefit
from the experience of others with this particular attacker.

The strategic choices made by the virtual player (set) V can be such that
their decisions to pay or not pay can be coordinated to maximize the total
gain nonetheless. This is precisely the coordination mentioned above among the

2 We remark that other authors [25] impose a different condition as “non-degeneracy”,
synonymously called the “diagonal condition”, which is a11 − a21 − a12 + a22 �= 0
and b11 − b21 − b12 + b22 �= 0 for a bimatrix game {(aij , bij)}2

i,j=1. Our games do not
satisfy this condition, but are non-degenerate in the sense of [6].
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victims, and we postpone its discussion until having covered two simpler cases
of behaviour first:

1. If the adversary acts in the same way towards all its victims, i.e., always plays
the same strategy (lock or unlock) towards V1, . . . ,Vn, then the situation is
no different to that of a single victim, i.e., 2-player case, and Proposition 2
applies.

2. If the adversary acts individually against each victim, i.e., can per Vi decide
whether or not to unlock, then the compound game becomes a set of iden-
tical copies of 2-player games, all of which will converge towards the unique
equilibrium that Proposition 2 assures.

3. The attacker acts in the same way towards the entire group (either generally
unlocks or generally keeps locked), but the group can orchestrate its response
by sharing this experience over time and best respond to it. For example, a
victim who has paid once but did not get their data unlocked may publish this
experience, which in turn damages the attacker’s “reputation” and will make
other victims perhaps less willing to choose the “pay” strategy (anticipating
that they would not get their data back too). This is the case studied in more
detail now.

By construction, the compound game is still non-degenerate since adding up
the inequalities from Table 1 will not change where the unique best responses are.
Hence, by results of [6], fictitious play will converge to an equilibrium, and the
question is which. Implementing the process directly in software is straightfor-
ward and readily shows that the one-against-all game (in its reduced form) still
has a unique equilibrium in pure strategies, which is “all victims refuse coopera-
tion” and “keep locked” for the attacker. While fictitious play is an impractical
method to solve the game (not only for notoriously slow convergence [7] but also
for the exponential size of the game), it covers the learning from experience,
such as practice has shown that even paying the ransom does not mean not to
get attacked again in future or having to pay several times even [9]. Hence, our
model substantiates the recommendations compiled from practical experience
(see Sect. 5).

The existence and form of the equilibrium is provable in the general case by
the well-known “graphical method” to solve 2 × K games:

Proposition 4. Consider a one-against-all game where the adversary attacks
n ≥ 1 victims, all with individual payoff structures as in Fig. 2, but allowed
to have individually distinct parameter sets constrained only to satisfy c

(i)
d > 0

and c
(i)
p > 0 for i = 1, 2, . . . , n. Let the victim set act cooperatively against

the attacker as player 0, by summing up their payments and responding in a
coordinated way to minimize their individual payments to the attacker, who also
receives the total ransom from all victims.

Then, this game has a unique Nash equilibrium in pure strategies: for all
victims to “not pay” and for the attacker to “keep locked”.

Proof. The virtual Player V makes a joint action a ∈ {pay, not pay}n, which
defines the attacker’s payoff in either of its two strategies as:
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– if A plays “unlock”, the payoff to the victim group V is

vV (unlock,a) =
n∑

i=1

{
−c

(i)
p , if victim i pays

0, if victim i does not pay
(2)

and likewise, would the payoffs for the adversary sum up across all victims,
defining vA(unlock,a) for the attacker as

vA(unlock,a) =
n∑

i=1

{
b
(i)
r − c

(i)
d , if victim i pays

−c
(i)
d , if victim i does not pay

(3)

– if A plays “keep locked”, the payoff to the victim group V is

vV (keep locked,a) =
n∑

i=1

{
−c

(i)
p − c

(i)
� , if victim i pays

−c
(i)
� , if victim i does not pay

(4)

with a similar summation of the respective payoffs from the bilateral games
to yield the revenue for the attacker as

vA(keep locked,a) =
n∑

i=1

{
b
(i)
r , if victim i pays

0, if victim i does not pay
(5)

Since cp > 0 and c� > 0 for each victim, the utility vV will, in both cases (2) and
(4), become larger (maximized) if fewer victims choose to “pay”. An arbitrary
single column in the 2 × K reduced game is hence given by

a[ ]
unlock · · · vV (unlock,a) · · ·

keep locked · · · vV (keep locked,a) · · ·

and the two values satisfy vV (unlock,a) > vV (keep locked,a), since the inequal-
ities added up are −c

(i)
p > −c

(i)
p − c

(i)
� or 0 > −c

(i)
� in (2) and (4). Similarly, in

(3) and (5) for a fixed victim’s strategy a, we sum up inequalities br − cd < br

or −cd < 0 (because cd > 0), so that the fixed strategy a has a unique best
response since vA(keep locked,a) > vA(unlock,a).

Figure 4 displays the two strategies of the attacker as vertical lines, in between
each strategy a represents a straight line that by the previous inequality goes
downwards from “unlock” to “lock”, and with two lines corresponding to distinct
payment profiles a′,a′′ differ only in their slopes. The optimal action for the
attacker is, for maximizing its payoffs, at the minimum of the two points of the
straight line and at the minimum over all lines (two of which are displayed in
Fig. 4). Since they all have downward slopes, the optimum for the attacker is a
pure strategy. By the non-degeneracy condition, the likewise best reply for the
victims is also pure, yielding the claimed Nash equilibrium.
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Fig. 4. Graphical method to optimize the attacker’s choice among a′,a′′

5 Model Validation Against Practical Experience

This section discusses our model’s equilibria in light of practical reportings about
ransomware cases [36]). We recall that our model generally admits three equi-
libria: (do not pay, keep locked), which is what security agencies typically rec-
ommend (for the victim’s behavior), but also (pay, unlock), which is the “best
case” for the victim once its data has been encrypted, and finally also (pay, keep
locked), which is the worst case that is also practically known to occur. The
remaining strategy of (not pay, unlock) is unrealistic, since the attacker would
not just revert its attack because the victim refuses to pay; this unrealistic case
is not an equilibrium in our game.

Since we may not expect the adversary and its victim to rationally optimize
payoff according to a pre-determined equilibrium, we instead look at where their
behaviour converges in an iterative learning process (from experience) to best
adapt to each other’s behaviour. In the simplest instance, the process of taking
best replies to the so-far recorded history of past moves of the other player is
called fictitious play (FP). Upon convergence, its limit is an equilibrium either in
pure or mixed strategies if the process converges in the time-average sense. We
implemented the process for the general case of mixed stopping profiles shown
in Fig. 3, with the parameters chosen at random under the following constraints:
α1, β1 ∼ U(0, 1) with α2 = 1 − α1, β2 = 1 − β1, and cp = 10 (the victim pays
a relatively high ransom), cd = 1 (the attacker’s effort to unlock the data is
relatively small), br = 0.7 · cp (the attacker’s benefit is largely proportional to
the payment of the victim, possibly reduced by a fraction to pay a money-mule
in between), c� = 2 · cp (the victim’s cost of permanent data loss is much larger
than paying the ransom; for otherwise, there would be no point in considering a
payment anyway).

We let the process run 1000 times, with 10 000 iterations each, starting from
the point (0, 0) for player 1, corresponding to not having made any choice to
pay or not pay in the past, and letting player 2 start from (0, 1), modelling the
initial strategy of keeping the data locked. Among the 1000 trials, we observed
three kinds of equilibria: two pure equilibria (not pay, keep locked) to which FP
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converged in 616 cases, (pay, keep locked), which occurred 203 times, and mixed
equilibria (in all remaining cases). We have also let the experiments run with
further randomization letting cp ← U [7, 13], cd ← U [0.7, 1.3], br ← U [0.5, 0.9] ·cp,
and c� ← U [1.3, 2.2] · cp, where we slightly abuse the notation in denoting a
uniformly random quantity in a defined range by U . Sampling fresh values over
each of the 1000 iterations and counting the equilibria found, did not significantly
change the results. This indicates that the numeric ranges seem to have only
a minor impact on the findings (keeping the magnitudes of the variables in
the same mutual relations). We also let the parameter choices be random but
satisfying the hypothesis of Theorem 4, finding only mixed equilibria then (as
expected).

The situation, where the victim paid, but still could not recover its data has,
unfortunately, reported cases in reality. Depending on the source, the number of
companies paying the ransom but not getting back their data seems to be low
to moderate (between 1% and 12% according to [36, pg.24]). Our model is a bit
more pessimistic herein, since it predicts this to occur in about ≈ 20% of the cases
(where FP converged to this situation). We may interpret this as adversaries,
perhaps not acting “as rational” as we assume here, thankfully to the advantage
of the victims. A dark count of unreported cases due to embarrassment, fear
of losing customers or reputation, and other means, is possible, but can only
be speculated about. The model as such does not account for this additional
fraction. However, as statistics indicate [37], the equilibrium of paying but not
unlocking, is, in the model, more likely than statistics reports in reality, even if
a considerable dark count is assumed. Thus, the model’s prediction of this can
be regarded as an upper bound approximation.

In the case of online learning, after a certain burn-in period (which can be
worst-case exponentially long for FP [7] and occasionally took a few thousand
iterations in our experiments), the expected adversarial gain, even after repeating
and stopping, is proportional to the expectation E(X0), which can be taken as
the equilibrium payoff to start with. The usually long learning period of an
iterative solution of the game substantiates the recommendations made about
behaving under a ransomware attack, namely “not pay”, and rather invest the
effort into a good backup strategy.

6 Conclusion

In this paper, we presented a simple bimatrix game with rational payoff struc-
tures designed to capture a set of realistic, i.e., reported, equilibrium cases. Our
model covers cases in which both players can drop out at random. This possibility
leads to an interesting set of theoretical possibilities that have been practically
reported, among them: attackers that unlock the data upon paying the ransom
(as victims would hope), attackers that keep the data locked although the victim
paid (as is known from practical cases), but also attackers suddenly disappear-
ing from the “market” (e.g., because they were caught) or victims that suddenly
disappeared (e.g., because they cannot pay or have sufficiently hardened their
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systems). On the contrary, the model does not admit unrealistic equilibria like
the attacker unlocking without receiving any ransom.

From a theoretical perspective, the game admits analytic solutions despite
being nonzero-sum by solving a generalized eigenvalue problem numerically
or analytically, but alternatively, converging under online learning of best
behaviour. Observe that the summation of payoffs prescribed in prop. 3 will
most likely not happen in reality (victim’s will not pool their payments to
jointly satisfy the attacker), and the summation is only a technical feat. The
resulting two-person game (attacker versus “victim group”), however, is like if
we would have modelled a cooperative game. The actual collaboration in reality
will, most likely, be confined to sharing information towards immunizing itself
against the ransomware attack by sharing the vulnerability and letting others
patch it accordingly. An instance of this could be groups that are part of already
established communities (enterprises, but also ed over online platforms or simi-
lar).

The question about whether the equilibrium is meaningful in practice, as
already raised in Proposition 2 for n = 1, remains—somewhat surprisingly—also
in the case of coordinated behaviour among the group of victims. It is, however,
consistent with the usual recommendations to not support ransomware as a
business model and rather invest in reliable backups rather than savings to pay
ransomware in case. Hence, the recommendation for practice to not pay ransom
(e.g., [1,12,27] to name only a few, although there is no ultimate consensus) is
indeed supported by the game-theoretic (economic) considerations made here.
As items of future work, it would be interesting to extend our linear algebra
approach to allow infinitely repeating strategies. As a first step, one can consider
nonnegative stopping matrices S ≥ 0. In this case, the results of [34] regarding
rational payoffs might not apply due to zero in some entries of S. The framework
of birational games will have to be adapted to consider a vanishing denominator
in the national payoff functions, which seems problematic.

An open issue is letting the model be dynamic, in the sense of letting the
parameters change over time. For example, companies building up savings or
insurance against ransomware attacks, or increasing resilience by strengthening
their backup and recovery strategies (thus causing payoff discounting eventually,
since attacking a more resilient victim requires more resources for the same
revenue). The game strategies of either “paying” or “not paying” the ransomware
are, currently, consistent with reports by companies [37], but possibilities of
negotiating the ransom over several rounds (and thereby changing the payoff
structure) may be considered as additional strategies in future work.

Another extension could be an adaptation of the learning algorithm for the
one-to-many scenario. Theorem 2 shows that the FP algorithm can be used for
any 2 × n nondegenerated stopping game where rank(S) = 1, as the under-
lying birational game is solvable through a bimatrix game, for which other
direct techniques implemented in software exist [24,31]. However, once the addi-
tional parameters αi and βj come into play, algebraic non-degeneracy conditions



84 E. Pflügel and S. Rass

become complicated and inconvenient so that the general convergence of FP is
not trivial to establish.

Acknowledgements. This work was partially supported by the LIT Secure and Cor-
rect Systems Lab funded by the State of Upper Austria and the Linz Institute of
Technology (LIT-2019-7-INC-316).

A Proofs

Proof (of Lemma 1). Define v = x�Ay
x�Cy

. First, we consider the “shifted” matrix

Ã = A − vC and ṽ = x�Ãy
x�Cy

which implies ṽ = 0. Denote the best responses set

of a strategy by BR(·). Since x ∈ BR(y), we have x̃�Ãy
x̃�Cy

≤ 0 for all strategies
x̃ �= x. Let us write x� = (x1, . . . , xi, . . . , xn) and assume xi �= 0. Furthermore,
denote ei

� = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0). It is clear that ei
�Ãy ≤ 0 because of C > 0.

Now assume ei
�Ãy < 0, minimal for all pure strategies. Find j �= i, xj �= 0

(such j exists since x is not pure) and define x̂� = x� − xiei
� + xiej

� =
(x1, . . . , 0, . . . , xj + xi, . . . , xn). This is a mixed strategy, as all components of
this vector still add to one. It follows that

x̂�Ãy = x�Ãy + xi

>0︷ ︸︸ ︷
(ej

�Ãy − ei
�Ãy) > x�Ãy

which is a contradiction. Hence we must have ei
�Ãy = 0. This shows that ei

is a best response to y. We now reconsider the matrix A and obtain ei
�Ay =

ei
�(Ã + vC)y = ei

�vCy hence ei
�Ay

ei
�Cy

= v.

Proof (of Theorem 2). Let us first establish some auxiliary expressions. As C is
of rank 1, we have the rank-factorisation C = pq� with positive vectors p ∈ Rm,
q ∈ Rn. To prove the theorem, we fix an equilibrium solution (x∗,y∗)

x∗�(B − vyC) ≤ 0, (A − vxC)y∗ ≤ 0

where vx and vy are the corresponding game values. We define the diagonal
matrices P = diag(p1, . . . , pm), Q = diag(q1, . . . , qn) and obtain x∗�(B −
vyC) ≤ 0 ⇐⇒ x∗�P(P−1BQ−1 − vyE) ≤ 0 and (A − vxC)y∗ ≤ 0 ⇐⇒
(P−1AQ−1 − vxE)Qy∗ ≤ 0. This shows that with x̃� = x∗�P and ỹ = Qx∗,
we have that (x̃, ỹ) can be normalised to form equilibrium solutions (x̃′, ỹ′) with
the same game values vx and vy. As P and Q are invertible and P−1,Q−1 > 0,
the correspondence is one-to-one.
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Abstract. Quantum computing as an inevitable technology can revolu-
tionize many aspects of our society. One potential impact is on cryptocur-
rency such as Bitcoin, which relies on proof-of-work mining to secure the
underlying blockchain protocol. Miners empowered by quantum comput-
ers will have superior computational power to win the competition. The
quantum advantage jeopardizes the security and trustworthy of cryp-
tocurrency and the transaction validation process by taking over a major-
ity of the network’s computing power, known as a 51% attack. Fraudulent
Bitcoin transactions in the form of double spending can happen, and the
emerging quantum miner could enable double spending and benefit from
it. How much double spending is optimal without causing too much “infla-
tion”? What shall be the optimal strategy of the first quantum miner
facing the competition from other quantum miners? What are the impli-
cations of having one or multiple quantum miners to the security of the
Bitcoin network? We conduct a novel game theoretic and economic analy-
sis to address these questions. Simulation illustrates that quantum miners
would have to collude to gain from double spending in a quantum com-
petitive environment. The distribution of cryptocurrency between quan-
tum miners and classical miners and how cost-effective classical miners
are can affect the profitability and the sustainability of double spending
as well as the collusion of quantum miners. Intensified quantum com-
petition will decrease the chance of collusion and eventually make the
Bitcoin network secure again. The critical point of quantum popularity
that will eliminate double spending is found.

Keywords: Game Theory · Quantum Computing · Cryptocurrency ·
Bitcoin · Quantum Mining · Double Spending · Collusion ·
Cybersecurity · Economics

1 Introduction

Cryptocurrency such as Bitcoin is a decentralized digital currency and payment
system based on classical cryptographic technologies which works without a cen-
tral administrator such as a central bank in traditional currencies. The Bitcoin
network operates on the Proof-of-Work (PoW) consensus mechanism to ensure
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the integrity of the network, allowing for secure and transparent peer-to-peer
transactions without the need for intermediaries.

It is generally believed that Bitcoin is cryptographically protected against
malicious modifications. The techniques used in cryptocurrency blockchains
make them virtually unhackable if the networks are powerful enough to out-
pace hackers. However, in theory, Bitcoin can be subject to the so-called “51%
attack”. A malicious miner or a group of miners who control more than half of
the network’s mining can launch an attack on the blockchain network. Attackers
could use their dominant computing power to alter the blockchain like inter-
rupting the recording of new blocks by preventing other miners from completing
blocks. Large miners could freeze any users’ funds, erase past transactions, or
launch other attacks like reversing transactions to double spend tokens.

With the current status of computation, it is nearly impossible to launch
a successful 51% attack on a cryptocurrency like Bitcoin with a large partici-
pation rate. A recent report [20] suggests that the current state of security in
Bitcoin makes 51% attacks economically unfeasible. However, the situation could
change with the recently rapid development of quantum computers. Quantum
computing is a cutting-edge computing paradigm that harnesses the principles of
quantum mechanics known as quantum bits (qubits) to perform computations.
The superposition and entanglement property of qubits as well as quantum gates
and quantum algorithms will put the early adopters of quantum computers in
an advantageous position also known as “quantum supremacy” where quantum
computers can solve the complex problems that classical computers cannot solve.

The emerging technology of quantum computing may impose credible threat
on the security of the Bitcoin network. When it comes to Bitcoin mining, miners
equipped with quantum computers (i.e., quantum miners) can have incompara-
ble advantage over classical miners in procuring mining rewards and rewriting
blockchain history. Although quantum computers are not powerful enough yet
[10], and researchers have suggested that 51% attacks on Bitcoin by quantum
computers may not be possible until 2028, recent evidence indicates it could
happen sooner [13]. With the superior computing power that no one can com-
pete with, the first-moving quantum miner certainly has the potential to benefit
from the advantageous computing power such as gaining from double spending.

Double spending can be viewed as digital equivalent of a perfect counterfeit.
Intuitively, double spending of Bitcoin benefits the attacker but at a cost of dete-
riorating Bitcoin value. As the number of tokens increases with the attacker’s
double fake spending, the value of Bitcoin is eroded partially due to increased
currency supply and inflation, and also due to trust in the network being dam-
aged which may eventually destroy Bitcoin. Such dilemma imposes a constraint
on the attacker’s scale of double spending. What is the optimal double spending
scale that is considered “healthy” without destroying Bitcoin? In addition, we
believe the first quantum miner’s monopolistic superior computing power will
not last forever. Once quantum computing is available to one Bitcoin miner, it
is only a matter of time until others with quantum computing will join, too.
With multiple quantum miners, none would have the 51% computing power to
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double spend alone. What is the best strategy of the first quantum miner facing
emerging quantum competition? How is the situation change with intensifying
quantum competition? What are the implications of the popularity of quantum
computing on the sustainability and the security of the Bitcoin network?

To address these questions, this study conducts a novel game theoretic analy-
sis on double spending strategies by quantum miners. It explores the appearance
and evolution of quantum computing in the Bitcoin network focusing on the
quantum miners’ incentive to double spend. We first develop an economic model
to find the equilibrium Bitcoin price using the supply and demand analysis of
the Bitcoin market. We further explore the effects of double spending on the
Bitcoin price and the economic well-being of various participants in the Bitcoin
market. We develop a game theory model to study the strategic actions by the
first quantum miner and other miners from whom more quantum miners emerge.
Our work compares the first quantum miner’s choices with and without quantum
competition. The modeling analysis indicates that the first quantum miner can
initially benefit from exercising the superior computing power to double spend.
Once facing quantum competition, all quantum miners (including the first quan-
tum miner) have solid financial incentives to collude with no motivation to cheat.
Nevertheless, the likelihood of collusion keeps falling with intensified quantum
competition. The collusion between quantum miners eventually breaks down,
and the Bitcoin network would once again become immune to 51% attacks. We
find that there are two critical break points of collusion or the ending points of
double spending, one relates to the percentage of Bitcoin in possession of the first
quantum miner, and the other relates to the percentage of the Bitcoin mining
population that are quantum miners.

We believe this is the first research examining the implications of quantum
competition on the Bitcoin network. An important insight is that the threat of
quantum computing on Bitcoin security may be limited and short-lived. The
first quantum miner and the subsequent quantum miners must walk a fine line
to balance the benefit and the cost of double spending and share the profit
of double spending. The first quantum miner can benefit from double spending
using the superior computing power, but it is extremely difficult, if ever possible,
to make double spending profit long-lasting. Collusion is a necessary condition
for quantum miners to double spend in a competitive environment. Although
quantum miners have the incentive to collude, the profitable and sustainable
range of double spending shrinks with spreading quantum computing. In case the
first quantum miner holds a large share of Bitcoin in circulation, the emergence
of another quantum miner is sufficient to terminate double spending.

2 Background and Related Work

Bitcoin, as a decentralized cryptocurrency, operates by motivating participants
to act in a way that benefits the entire network that involves various game
situations, e.g., allocating computational power to mining [3], competing for
mining rewards [16] and transaction fees [12], etc. Research suggests competition
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in Bitcoin mining increases energy consumption and may not be socially desirable
[14]. Game theory has been applied to the security and trust in the bitcoin
networks including 51% attacks and double spending [4,17,25].

Consensus networks like PoW were created to prevent double spending in
blockchain-based crypocurrencies [6] but this consensus is only reliable with the
assumption that no single miner can hold more than 50% of the network’s com-
putational power. Quantum computing promises to have exponential speedup
far surpassing classical computers [1] and is expected to impose threats on both
the technical and the financial security of Bitcoin [8,13]. Even a single quantum
miner with relatively low cartographical computing power can act strategically
to manipulate the blockchain network [2].

Double spending is the most straightforward way to monetize the ability of
breaching the 50% threshold to launch an attack on blockchain networks [21]. In
theory, a double spending attack at any proportion of computing power can be
made profitable [9]. It has been suggested that double spending can be prevented
by costly mining and delaying settlement [5]. Technical countermeasures include
the Proof-of-Stake (PoS) and other algorithms alternative to the PoW algorithm
to enhance Bitcoin security [19,24]. Possible solutions and preventive measures
are also studied considering the threats a quantum-capable attacker could impose
on blockchain networks [10,11,23]. Researchers are taking measures to tackle
the quantum challenge. A structured literature review [10] provides insights on
weighing up the dangers of quantum computing and the countermeasures.

Quantum computing can also change the way classical games are played.
If classic games are played on a quantum computer or played by a quantum
computer, the games become quantum games. The emerging quantum computing
has had a profound impact on the research domain in the context of multi-
agent games [22]. The quantum advantage allows quantum players to have a
distinct advantage over classical players to achieve higher payoffs at equilibrium
[7]. Economic incentives were analyzed for both quantum and regular miners for
optimal double spending [15].

Our research is related to existing literature on the incentive mechanisms
of the bitcoin network and the quantum threat on bitcoin security on a novel
angle: it focuses on the competition between quantum miners on top of the com-
petition between quantum miners and classical miners. It applies game theory
and economic principles to the security of bitcoin networks. To the best of our
knowledge, this is the first game theoretic study exploring the threat of quantum
computing on bitcoin networks in a quantum competitive environment.

3 An Economic Model of Bitcoin Market

In this section we establish a Bitcoin pricing model to explore the impacts of
double spending on bitcoin value. For easy reference, Table 1 provides a list of
major variables used in the paper and their brief definitions.
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Table 1. Symbols and Definitions

Symbol/Variable Definition

B capped Bitcoin maximum supply

B0 units of Bitcoin rewarded to classical miners

D double spending scale by the 1st quantum miner in case of monopoly
and by both quantum miners in case of duopoly

D1 double spending scale by the 1st quantum miner in case of duopoly

D2 double spending scale by the 2nd quantum miner in case of duopoly

PB equilibrium Bitcoin price without double spending

PD equilibrium Bitcoin price with double spending

EPB expected Bitcoin price without double spending

EPD expected Bitcoin price with double spending

P overall price level of goods and services traded in Bitcoin

Y quantity of items traded using Bitcoin as medium of exchange

V velocity of Bitcoin, frequency at which Bitcoin is used to pay

T units of Bitcoin demanded for transaction purpose

S units of Bitcoin demanded for speculative purpose

RR required rate of return on Bitcoin investment

R expected rate of return on Bitcoin investment

N classical miner population

C per-classical-miner operating cost of participation in Bitcoin network

3.1 The Quantity Analysis of Bitcoin as a Medium of Exchange

A medium of exchange is an intermediary instrument within an economy which
is used primarily to facilitate transactions. Bitcoin already operates as a medium
of exchange and Bitcoin in circulation satisfies the quantity equation

PBTV = PY (1)

where PB is the unit price of Bitcoin, T is the quantity of Bitcoin used as a
medium of exchange, V is the velocity of Bitcoin that is a measurement of the
rate at which one unit of Bitcoin is being transacted for goods and services in a
time period, P is the price level of goods and services traded in Bitcoin, and Y
is the units of goods and services traded in Bitcoin. Equation (1) is an identity
that holds true by definition, similar to the quantity equation of money defined
in economics.

From (1), the transaction demand for Bitcoin is

T =
PY

PBV
(2)

3.2 Supply and Demand Analysis of the Bitcoin Market

The supply and demand analysis is the natural framework to learn insights
about price determination. Here we apply the supply and demand analysis to
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the Bitcoin market to find the equilibrium Bitcoin price. In particular, the sup-
ply of Bitcoin comes from block mining which will eventually be fixed at B, the
designed maximum of Bitcoin. The supply of Bitcoin is exogenous to the model.
The demand for Bitcoin includes both the transaction demand for payment pur-
pose and the speculative demand for financial investment purpose. The quantity
of Bitcoin demanded for transaction purpose is T as in the quantity analysis of
Bitcoin. Bitcoin is also demanded for speculative purpose. Let S be the units of
Bitcoin demanded for such purpose. The Bitcoin market equilibrium (without
double spending) is

B =
PY

PBV
+ S (3)

where the right-hand-side is the combined demand for Bitcoin consisting of the
transaction demand from (2) and the speculative demand.

Solving (3), the equilibrium Bitcoin price is

PB =
PY

(B − S)V
(4)

As shown, Bitcoin price is increasing in the speculative demand for Bitcoin
and decreasing in the supply of Bitcoin.

The key determining factor of the speculative demand for Bitcoin is the
expected rate of return on Bitcoin investment (R = EPB−PB

PB
), which may or

may not be equal or above the required rate of return (RR) holders desire to
receive from Bitcoin investment. As in the finance literature, RR is defined as
the minimum return an investor will accept for an investment as compensation
for a given level of risk. We assume Bitcoin market participants have a common
RR to hold Bitcoin for speculative purpose.

Given expected Bitcoin price, if R < RR at the current Bitcoin price, the
speculative demand for Bitcoin decreases and the Bitcoin price starts to fall until
R rises to RR. If R > RR at the current Bitcoin price, the speculative demand
for Bitcoin increases and the Bitcoin price starts to rise until R falls to RR. In
the steady state of the Bitcoin market, the rate of return on Bitcoin investment
is equal to the required return, and the current Bitcoin price and the expected
Bitcoin price have the following relationship:

EPB = (1 + R)PB (5)

where R = RR.
In summary, the equilibrium of the Bitcoin market has two-fold meanings:

– The total Bitcoin supply is equal to the total Bitcoin demand including both
the transaction demand and the speculative demand for Bitcoin (3).

– The expected rate of return on Bitcoin investment is equal to the required
rate of return at the current market price of Bitcoin (5).

The latter implies that in Bitcoin market equilibrium, the market participants
have a common expectation to see the Bitcoin price to grow by R each period.
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Combining (3) and (5), we solve for the units of Bitcoin demanded for spec-
ulative purpose:

S = B − PY (1 + R)
EPBV

(6)

In (6), B, P , Y , R and V are all predetermined. There is a one-to-one cor-
respondence between the expected future price of Bitcoin and the speculative
demand for Bitcoin. As EPB increases, S increases. As EPB → 0, S → 0.

3.3 The Impact of Increased Bitcoin Supply (Double Spending)
on the Bitcoin Market

Suppose the supply of Bitcoin increases from B to B + D. The new Bitcoin
market equilibrium satisfies the following two conditions:

PD =
PY

(B + D − S)V
(7)

EPD = (1 + R)PD (8)

modified from (3) and (5).
Since the expected rate of return remains at R once the Bitcoin market

reaches the new equilibrium, the speculative demand for Bitcoin stays the same
as (6). As P , Y and V are all exogenous to the model and S stays unchanged,
(7) indicates that an increase in Bitcoin supply apparently decreases the market
value of Bitcoin, i.e., PD < PB . The increase in Bitcoin supply also decreases
the expected price of Bitcoin, i.e., EPD < EPB comparing (5) and (8).

The increased Bitcoin supply is fully absorbed into the transaction demand
for Bitcoin with PBT = PD(T+D), according to the quantity analysis of Bitcoin.

The economic impact of an increase in Bitcoin supply implies that the
increase in the quantity of Bitcoin waters down the value of Bitcoin. The pur-
chasing power of Bitcoin decreases but the speculative attractiveness of Bitcoin
can be conserved so long as speculators receive the same expected rate of return
equalling their required rate of return.

How is double spending compared to an authentic increase in Bitcoin supply?
Double spending means that the same units of Bitcoin could potentially be spent
multiple times. Successful double spending of Bitcoin essentially increases the
use of Bitcoin for transaction purpose by the amount of double spending and
reaches a total transaction demand for Bitcoin from T to T + D where D is
the scale of double spending, which represents both the increased transaction
demand for Bitcoin and the increased supply of Bitcoin, keeping the Bitcoin
market remain balanced with unchanged speculative demand for Bitcoin.

3.4 Double Spending Can be a Self-destructive Process

Different from increasing the money supply by printing money, the increase in the
Bitcoin supply due to double spending is temporary. According to the quantity
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equation of Bitcoin (1), two scenarios may occur following a successful double
spending at constant T , V and P .

Scenario 1 : Y is largely unaffected, i.e., the need to use Bitcoin to make payments
remains the same. In this case, the Bitcoin price will bounce back to the pre-
double-spending level.

Scenario 2 : Y decreases, e.g., when double spending makes fewer sellers willing
to accept Bitcoin. In this case, the Bitcoin price will stay below the pre-double-
spending level.

Scenario 1 is likely to be the case if double-spending does not diminish the
need of Bitcoin to make payment. In practice, Bitcoin is often used for under-
ground payments and illegal transactions, for ransomware payments, for govern-
ments to evade embargoes, etc. Such needs of Bitcoin is not economic per se and
may not be sensitive to the changing market value of Bitcoin. In this case, the
value of Bitcoin can self-recover after the temporary damage caused by double
spending.

In contrast, the damage of double spending to the market value of Bitcoin
is long-lasting in Scenario 2 when the deteriorating value of Bitcoin effectively
decreases people’s desire or ability to use Bitcoin to buy goods and services. If
double spending continues, the Bitcoin price would keep falling and eventually,
there could be no need to use Bitcoin to pay and Bitcoin would be worthless and
become nonexistent. In other words, double spending can be a self-destructive
process that leads to the extinction of Bitcoin, as depicted in Scenario 2.

4 Game Theory of Double Spending By Quantum Miners

As the economic analysis shows, there are both benefits and costs when a quan-
tum miner double spends. We capture the dilemma using a stylized game to study
the financial incentive for the first quantum miner to double spend strategically,
in absence and with the appearance of subsequent quantum miners. Specifically,
we explore the first quantum miner’s decision-making in case of “monopoly”
(when the first quantum miner is the only quantum miner) and “duopoly” (when
there is a subsequent quantum miner).

Suppose initially there are one quantum miner (referred to as the “first quan-
tum miner”) and N non-quantum miners (referred to as “classical miners”).
Without loss of generality, we assume all the miners are also Bitcoin users and
investors in the Bitcoin market. The strategic interaction is between the first-
moving quantum miner and classical miners from whom a subsequent quantum
miner may emerge. All the parties are money driven.

To focus on the themes, we make the following assumptions to highlight
several key features of the Bitcoin protocol and to simplify the situation:

– All miners participate the Bitcoin network with free entry and exit.
– There are no transaction rewards. Miners’ welfare is measured by the market

value of possessed Bitcoin.
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– The total Bitcoin is fixed. Upon acquisition of quantum computing, the first
quantum miner wins all mining competition and receives all remaining Bitcoin
rewards.

– All classical miners have the same computational power thus their possession
of Bitcoin and the mining cost are identical.

– Only quantum miners have the computing power to double spend. Quantum
miners have the same computing power.

– Quantity of goods and services traded in Bitcoin is constant but units of
Bitcoin needed to buy an item fluctuates with the Bitcoin price.

The unique features of the first quantum miner imply that the miner can act
like the monetary authority controlling the supply of Bitcoin by managing double
spending. When exercising the superior ability to double spend, the quantum
miner has to do the cost-benefit analysis. For classical miners nonetheless, the
inferior computing power disables them from winning the mining competition
but they reserve the freedom of leaving the Bitcoin network.

The game proceeds as follows: The first quantum miner chooses the scale
of double spending, which determines the current “money supply” of Bitcoin
and hence the price of Bitcoin. Classical miners choose whether to exit the Bit-
coin market. In a quantum competitive environment additionally, the subsequent
miner determines whether to counter double spending.

Since all miners are money driven, the welfare effects of their decision-making
determine their actions. The first quantum miner’s choice of double spending is
the key. Although the game is not modeled as a Stackelberg game, the first
quantum miner can be viewed as the leader and the game can be solved using
backward deduction starting from the classical miners’ and the subsequent quan-
tum miner’s decision-making.

In the following analysis, we begin with the welfare analysis and the finding of
game solutions in absence of quantum competition. We then discuss the situation
in a quantum competitive environment.

4.1 Welfare Impact of Double Spending

Double spending by the first quantum miner affects the welfare of all the miners.

Welfare Impact of Double Spending on the First Quantum Miner.
Using the defined variables in Table 1, the units of Bitcoin held by the first
quantum miner is (B −B0). Specifically we define D, the double spending scale,
as the number of tokens held by the quantum miner the miner uses to double
spend once. We ignore the possibility of multiple double spending to make the
model traceable and manageable. With this definition, (B − B0) sets the upper
bound on the double spending scale of the first quantum miner.

At the moment of double spending, the market value of Bitcoin is PB so that
the quantum miner gains an amount of PBD. As double spending decreases the
market value of Bitcoin, the cost of double spending for the quantum miner is
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(PB − PD)(B − B0). Taking into consideration both the benefit and the cost of
double spending, the net welfare gain the first quantum miner receives is

Π = PBD − (PB − PD)(B − B0) (9)

Welfare Impact of Double Spending on Classical Miners. The loss to
classical miners come from the decreased value of Bitcoin caused by double
spending. For classical miners as a whole, their total loss is

(PB − PD)B0 (10)

which is equally shouldered by classical miners.

4.2 Finding Profitable and Sustainable Double Spending

The monopolistic quantum miner has the following constraints when making the
rational choice of double spending:

– The upper bound of double spending is the monopolistic quantum miner’s
possession of Bitcoin.

– The quantum miner’s net gain is non-negative.
– The Bitcoin network is resilient to double spending “attack” launched by the

quantum miner, i.e., classical miners do not exit the Bitcoin network.

The three constraints correspond to the following three math relations:

0 ≤ D ≤ (B − B0) (11)

PBD − (PB − PD)(B − B0) ≥ 0 (12)

PD
B0

N
≥ C (13)

where B0/N is the holding of Bitcoin by an individual classical miner and C is the
per-classical-miner’s operating cost that includes the hardware cost, electricity,
etc. Classical miners have the financial incentive to support the Bitcoin network
as long as the remaining value of Bitcoin exceeds the cost of participating in the
network. Although the initial investment in quantum computing is significant,
once in operation, the fast quantum computing power largely saves the mining
cost. Therefore, for simplicity, the operating cost of the quantum miner is not
included. Adding quantum miners’ cost function to the model will not change
model conclusions. Indeed, it will strengthen the model conclusions by reducing
the profit margin of quantum computing.

From (12), double spending is profitable for the first quantum miner at

D ≥ (PB − PD)(B − B0)
PB

(14)
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Combined with (11), the profitable double-spending satisfies

(PB − PD)(B − B0)
PB

≤ D ≤ (B − B0) (15)

Combining (7) and (13), the sustainable double spending falls in the following
range to keep classical miners stay in the Bitcoin network:

D ≤ PY B0

NCV
+ S − B (16)

Combining (15) and (16), we have the final specification of the range of double
spending the first quantum miner shall pursue to make double spending both
profitable and sustainable:

(PB − PD)(B − B0)
PB

≤ D ≤ min{(B − B0),
PY B0

NCV
+ S − B} (17)

4.3 The Impact of Quantum Competition

Naturally the first quantum miner can be the monopolistic quantum miner only
for a certain time. Eventually subsequent quantum miners will occur. How will
quantum competition change various miners’ decision-making?

Subsequent Quantum Miner’s Choice. Since all quantum miners are
assumed to have the same computational power, if there are more than one quan-
tum miner in the Bitcoin network, no individual miner could reach the threshold
to launch a 51% attack. With the computational power compatible with the first
quantum miner, the second quantum miner needs to choose if to use the power
to prevent the first quantum miner from double spending. If yes, the market
value of the Bitcoin held by the second quantum miner is PB

B0
N ; If not, the sec-

ond quantum miner’s welfare is PD
B0
N . Apparently, the second quantum miner

would be better off to prevent the first quantum miner from double spending.
In other words, although the second quantum miner does not have the ability
to double spend successfully, he/she still benefits from possessing the computa-
tional power to protect the Bitcoin network against double spending. Remaining
classical miners benefit as well.

The insight learnt is that when there are multiple quantum miners in the
Bitcoin network, the network can be resistant to 51% attacks.

The First Quantum Miner’s Choice Facing Quantum Competition.
Since no individual miner, quantum or classical, would be able to double spend
successfully acting alone, the first quantum miner is worse off for sure facing
quantum competition. To double spend, the first quantum miner would have to
collude with the subsequent quantum miner.
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Collusive Quantum Miners. In principle, the two quantum miners can col-
lude to double spend. They jointly choose how much to double spend and share
the net gains. Suppose the first quantum miner double spends D1 and the second
quantum miner double spends D2. They face the following constraints:

0 ≤ D1 ≤ (B − B0) (18)

0 ≤ D2 ≤ B0

N
(19)

PBD1 − (PB − PD)(B − B0) ≥ 0 (20)

PBD2 − (PB − PD)
B0

N
≥ 0 (21)

PD
B0

N
≥ C (22)

Of above, the first two equations limit the feasible range of double spending
by each quantum miner, the second two guarantee that double spending is prof-
itable for the quantum miners, and the last serves to keep classical miners from
exiting the Bitcoin market. Solving these inequalities, the common ranges that
satisfy all of the constraints are

(PB − PD)(B − B0)
PB

≤ D1 ≤ (B − B0) (23)

(PB − PD)B0
N

PB
≤ D2 ≤ B0

N
(24)

D1 + D2 ≤ PY B0

NCV
+ S − B (25)

There can be various combinations of {D1,D2} that make double spend-
ing profitable and sustainable. We will use simulations to illustrate the sets of
solutions and the impacts on the first quantum miner when facing quantum
competition.

5 Simulation Analysis And Numerical Examples

In this section, we parameterize the model and illustrate the profitability, fea-
sibility and sustainability of double spending by the first quantum miner and
the plausible collusion between quantum miners. Due to lack of transparency in
the Bitcoin network regarding Bitcoin ownership and transactions, it is hard to
find data sources to assign values to the variables. We look for publicly available
data and assign values with the priority of having the relative values meaningful
rather than having the values match the real-world data.
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5.1 Assigning Values to Variables

Bitcoin was designed from its inception to have a capped supply of 21 million
tokens. Bitcoin has a history of fluctuating and ever-increasing price. Starting
at a price of zero when it was introduced in 2009, the Bitcoin price reached over
$70,000 in May 2024. The price jumps and fluctuations generally reflect investor
enthusiasm, demand, and supply. The historical record of Bitcoin shows the
market certainly has not yet shown the steady state. The actual data on Bitcoin
supply, demand and price may not be a good fit for this simulation purpose.

As for the number of people participating in the Bitcoin market, the exact
number of Bitcoin miners is difficult to determine due to the decentralized and
anonymous nature of the network. Estimates suggest that there are tens of thou-
sands of active miners worldwide. As of March 2024, there are just over 46 million
Bitcoin wallets holding at least $1 of value. Around 40% of Bitcoin ownership
falls into identifiable categories, including exchanges, miners, governments, bal-
ance sheets of public companies, and dormant supply [18].

We choose an approach to use hypothetical parameter values along with the
scaling-down of some realistic data to simulate the effects of double spending.
We assume there are initially 1 quantum miner and 100 classical miners. The
first quantum miner holds 10% of the total Bitcoin. The total supply of Bitcoin
is fixed at 2, 000, of which the first quantum miner holds 200 and each classical
miner holds 4.5. In the Bitcoin market equilibrium, 70% Bitcoin is demanded
for speculative purpose and 30% is for transaction purpose. That is, the values
of the parameters are set as N = 100, B = 2, 000, B0 = 1, 800, S = 1, 400,
T = 600. We also set P = 1, V = 2 and Y = 12, 000.

5.2 The Case of No Quantum Competition

At the specified parameters, the initial Bitcoin price is 10 from (4). From (7),
The relationship between double spending and the Bitcoin price is

PD =
6, 000

600 + D
(26)

In absence of quantum competition, the first quantum miner’s choice of prof-
itable and sustainable double spending, from (17), is defined by

20(10 − PD) ≤ D ≤ min{200, (120, 000
C

− 600)} (27)

Replacing PD in (27) with (26), we can find all the profitable and sustainable
scale of double spending the first quantum miner can choose from:

20(10 − 6, 000
600 + D

) ≤ D ≤ min{200, (120, 000
C

− 600)} (28)

At C = 150, (120,000C − 600) = 200. Such cost can be called the “accom-
modation cost”. If the operating cost of classical miners is no higher than the
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Fig. 1. The welfare effects of double spending (i.e., benefit, cost and net gain) for the
monopolistic quantum miner when the miner holds 10% of total Bitcoin. As shown, the
net gain of double spending is increasing in the level of double spending. The optimal
strategy is to double spend to the upper bound of the profitable and sustainable range
of double spending.

accommodation cost, the first quantum miner would be able to double spend all
the possessed Bitcoin. Otherwise, the first quantum miner would have to limit
the actual double spending at a level below the quantity of possessed Bitcoin.
The implication is that the efficiency of classical miners can be beneficial to
quantum miners. As cost-effective classical miners are more likely to remain in
the Bitcoin network, the quantum miner has more flexibility to double spend.

The first quantum miner’s net gain of double spending is

Π = 10D − 200(10 − 6, 000
600 + D

) (29)

which is the difference between the benefit and the cost of double spending.
Figure 1 illustrates how the benefit, the cost and hence the net gain of the

first quantum miner changes with the scale of double spending when the first
quantum miner holds 10% of total Bitcoin. As shown, both the benefit and the
cost increase with the scale of double spending. At the specified parameters, the
benefit increases faster than the cost so that the optimal level of double spending
is the highest possible double spending that is feasible and sustainable. In other
words, the first quantum miner will double spend to the limit of the feasible and
the sustainable range.

The ever positive and increasing net gain of double spending at any level of
double spending is largely due to the small share of Bitcoin in the possession of
the quantum miner whose double spending does not significantly affects Bitcoin
supply or Bitcoin price. What if the quantum miner holds a big share of Bitcoin?
As an extension of the simulation, we keep other parameters unchanged but
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assume the first quantum miner holds 60% of total Bitcoin or 1, 200 Bitcoin
tokens.

Fig. 2. The welfare effects of double spending (i.e., benefit, cost and net gain) for the
monopolistic quantum miner when the miner holds 60% of total Bitcoin. As shown, the
net gain of double spending initially falls before it starts rising. When the monopolistic
quantum miner holds a large share of total Bitcoin, the miner has to double spend
beyond a threshold to make double spending profitable.

Figure 2 illustrates how the benefit, the cost and hence the net gain of the first
quantum miner changes with the level of double spending when the first quantum
miner holds 60% of total Bitcoin. As shown, the benefit and the cost still increase
with the level of double spending, which is true regardless anyway, but the cost is
increasing faster than the benefit initially. Therefore when the quantum miner’s
holding of Bitcoin is a large share of total Bitcoin in circulation, the miner has
to double spend beyond a certain threshold to make double spending profitable.
In this numerical example, the threshold is D = 600, as can be solved from (14).

To generalize, assuming classical miners are sufficiently efficient, i.e., C ≤ 150,
so that the upper bound of double spending by the quantum miner is the Bitcoin
held by the quantum miner. The range of profitable and sustainable double
spending at various possession of Bitcoin by the quantum miner is illustrated
in Fig. 3. Double spending would be profitable and sustainable so long as the
quantum miner chooses to double spend within the range. For most part, the
width of the range is constant at 600. This is largely because of the model
assumptions that lead to a proportional change in the Bitcoin price along with
an increase in the Bitcoin supply. If we factor in other considerations such as
psychological (e.g., the lost confidence of Bitcoin users when the quantum miner
holds more Bitcoin), the range may start narrowing when the Bitcoin holding
by the quantum miner reaches a certain level.
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Fig. 3. The range (lower/upper bounds) of the profitable and sustainable scale of
double spending for the monopolistic quantum miner at various levels of Bitcoin in
possession. The actual double spending by the miner has to fall within such boundary.

5.3 Quantum Mining Collusion in a Competitive Environment

Now we look at the duopolistic competition and collusion between the first quan-
tum miner and a subsequent quantum miner. Jointly, there are three constraints
imposed on the two quantum miners’ choice of double spending:

20(10 − PD) ≤ D1 ≤ 200 (30)

1.8(10 − PD) ≤ D2 ≤ 18 (31)

D1 + D2 ≤ 120, 000
C

− 600 (32)

Previous simulations show that the net gain of double spending is increasing
in the scale of double spending beyond a threshold (0 or above). An individual
quantum miner would want to double spend at the maximum, which would only
be possible if C ≤ 147, in which case D1 = 200 and D2 = 18, and the quantum
miners would easily form a coalition. Neither party would have an incentive to
deviate. Note the accommodation operating cost of classical miners is smaller at
the presence of multiple quantum miners, implying that the prerequisite for the
optimal collusion between quantum miners is the improved efficiency of classical
miners. The more efficient classical miners are, the more likely for more quantum
miners to form an optimal coalition.

Nevertheless, if C > 147, not all quantum miners can reach the maximum
possible double spending. The quantum miners would have to compromise and
each chooses a scale of double spending that is below their upper bound.

Suppose C = 160, then D1 + D2 ≤ 150 from (32), i.e., the combined double
spending must be no higher than 150. The first quantum miner has to bargain
with the subsequent quantum miner to coordinate double spending.
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What are the subsequent quantum miner’s options? There are three possi-
bilities:

– Do nothing. The welfare effect on the subsequent quantum miner is −(PB −
PD)B0

N = −36.
– Do not collude but use the quantum power to prevent the first quantum miner

from double spending. The welfare effect is 0.
– Collude to share the net gain of double spending with the first quantum

miner. The welfare effect is 10D2 − 36.

Apparently, the subsequent quantum miner’s best strategy is to collude if
given an assigned share of double spending D2 ≥ 3.6. In this double spending
game, both quantum miners have no incentives to cheat. On one hand, the
net gain is increasing in the scale of double spending so the parties have no
incentives to under spend. On the other hand, since the agreed-upon allocation
of double spending satisfied D1 + D2 = 150. One party’s over spending would
push classical miners exit the Bitcoin market hence killing the Bitcoin network.
Unless the quantum miner is extremely myopic, the quantum miner would limit
double spending to make classical miners stay. The numerical example shows
that when facing the quantum competition, quantum miners have an incentive
to collude, and their coalition is stable.

At B − B0 = 200, the range of profitable and sustainable double spending
is 0 ≤ D1 ≤ 200, as shown in Fig. 3. The first quantum miner certainly benefits
from collusion that makes double spending possible. Nevertheless, as the number
of subsequent quantum miner reaches 42, it would no longer be possible to find
any feasible allocation of double spending to enable collusion. There will be
no more double spending. N∗ = 42 is the critical quantum popularity that
will effectively terminate double spending. In other words, in this numerical
example, when quantum computing reaches about 40% of the mining population,
no quantum miners can successfully double spend no matter how collusive and
collaborative they are.

In Fig. 4, we illustrate the critical quantum mining penetration rate in rel-
evance to the Bitcoin possession by the first quantum miner at C = 160, i.e.
D2 ≥ 0.2 B0

100 , holding D1 = 0 for the purpose of simulating the feasibility of
quantum mining collusion. Quantum mining penetration rate is measured by
quantum miners as a percentage of the mining population. The critical pene-
tration rate is a break point of double spending beyond which double spending
disappears. Figure 4 shows that the distribution of circulating Bitcoin between
the first quantum miner and classical miners is essential. At first, at low levels
of Bitcoin in possession of the first quantum miner, an increase in the Bitcoin
holding by the quantum miner increases the room of quantum mining collusion.
The more classical miners hold Bitcoin, the short-lived is double spending. Nev-
ertheless, beyond the turning point of the curve, an increase in the fist quantum
miner’s holding of Bitcoin decreases the likelihood of collusion and eventually,
quantum competition totally disables double spending practice in the Bitcoin
network. If the first quantum miner holds a certain amount of circulating Bit-
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Fig. 4. The critical (maximum) penetration rate of quantum mining to enable collusion
among quantum miners. For example, at the turning point 600 Bitcoin possession (30%
of total Bitcoins), quantum miners may still collude if quantum mining does not exceed
53% among all mining processes.

coin (around 780 in the simulation), there is no more room to collude with
subsequent quantum miners even at D1 = 0.

In other words, collusion between quantum miners is not always feasible. We
have to combine Figs. 3 and 4 to find the mutually beneficial shares of double
spending between the first quantum miner and the subsequent quantum miners.
At B − B0 = 800 for example, the lower bound of the first quantum miner’s
double spending is 200, which exceeds 150. The first quantum miner will not
be able to share double spending with the subsequent quantum miner who will
prevent the first quantum miner from double spending. The line in Fig. 4 depicts
critical quantum penetration to disable double spending. The intersection of
the line and the x-axis is the break point of Bitcoin possession by the first
quantum miner to make double spending possible facing quantum competition.
Beyond the point, the appearance of just another quantum miner will suffice to
terminate double spending practice. Although different parameters will change
the numerical values of quantum mining profit, the critical penetration rate, etc.,
they do not affect the model conclusions.

6 Conclusion and Future Work

The appearance of quantum computing imposes a fundamental threat to the
survival of cryptocurrencies such as Bitcoin. Early adopters of quantum com-
puting will have unprecedented advantage over traditional miners and exercise
the superior computing power to launch 51% attacks on the Bitcoin network such
as profiting from double spending. This paper conducts the economic and game
theoretic analysis of the interconnections between emerging quantum computing
and cryptocurrency security. The research explores the effects of double spend-
ing and quantum computing competition on the welfare of the Bitcoin market
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participants and the overall security of the Bitcoin network. A stylized game is
developed to explore the strategic interactions between Bitcoin miners with a
focus on the decision-making by the first quantum miner in absence and with
quantum competition from subsequent quantum miners.

The research results suggest that in absence of quantum competition, the
first quantum miner, as the money-driven monopolistic quantum miner, shall
choose the level of double spending in a sustainable range that is profitable to
the monopolistic quantum miner and also provides sufficient financial incentives
to encourage the network participation of classical miners. The appearance of
subsequent quantum miners makes the first quantum miner worse off. Facing
quantum mining competition, quantum miners have to collude to successfully
double spend. Simulations illustrate that the key factors determining the prof-
itability and the sustainability of double spending in a quantum competitive
environment are the distribution of Bitcoin between the first quantum miner
and other miners and the intensity of quantum competition. Most interestingly,
the thresholds and critical turning points of collusion among quantum miners
were identified in simulations.

Notable findings also indicate the cost effective classical miners are beneficial
to quantum miners. The early quantum miners’ holding of Bitcoin is a double-
edged sword. The increased holding of Bitcoin by the first quantum miner can
make double spending more profitable and longer-lived but only up to a certain
point. Increased penetration rate of quantum mining and presence of quantum
competition will eventually terminate double spending practice and make the
Bitcoin network secure again. To that end, we recommend and encourage quan-
tum competition. Future research is necessary to implement quantum security
measures against quantum-based double spending practice before its self-healing.
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Abstract. We describe a new complete algorithm for computing Nash
equilibrium in multiplayer general-sum games, based on a quadratically-
constrained feasibility program formulation. We demonstrate that the
algorithm runs significantly faster than the prior fastest complete algo-
rithm on several game classes previously studied and that its runtimes
even outperform the best incomplete algorithms. We expect our algo-
rithm to be applicable to important game models in economics, political
science, security, and many other fields.

Keywords: Game theory · Equilibrium computation · Multiplayer
Nash equilibrium · Optimization

1 Introduction

Nash equilibrium is the central solution concept in game theory. While a Nash
equilibrium can be computed in polynomial time for two-player zero-sum games,
it is PPAD-hard for two-player general-sum and multiplayer games and widely
believed that no efficient algorithms exist [7–9]. Furthermore, even if we were able
to compute an equilibrium for these game classes, it would have no performance
guarantee. In a two-player zero-sum game, every Nash equilibrium guarantees at
least the value of the game in expectation in the worst case. Therefore, if players
alternate roles, a Nash equilibrium would guarantee a win or tie in expectation
regardless of the strategy used by the opponent. However, for non-zero-sum
and multiplayer games, an equilibrium would have no performance guarantee.
There can be multiple equilibria with different values, and if the opponents play
strategies from a different equilibrium than ours then the resulting strategies
may not be in equilibrium.

Despite these computational and conceptual challenges, we must still cre-
ate agents with strong strategies for these settings, and Nash equilibrium is a
compelling starting point. It was shown that an exact Nash equilibrium strat-
egy defeated a variety of agents submitted for a class project in 3-player Kuhn
poker [11]. Recently an agent was created for 6-player no-limit Texas hold ’em
that defeated strong human players by attempting to approximate Nash equilib-
rium strategies [6]. The core equilibrium-finding technique used by this agent was
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Sinha et al. (Eds.): GameSec 2024, LNCS 14908, pp. 109–123, 2025.
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based on the counterfactual regret minimization algorithm, an iterative self-play
procedure [26]. It has been demonstrated that counterfactual regret minimiza-
tion does in fact converge to an ε-Nash equilibrium (a strategy profile in which
no player can gain more than ε by deviating) for small ε in three-player Kuhn
poker, while it does not converge to equilibrium in the larger game of three-
player Leduc hold ’em [1]. These results show that Nash equilibrium strategies
(or their approximations) can be successful in practice despite the fact that they
do not have a performance guarantee.

Several algorithms have been developed for computing Nash equilibrium in
multiplayer games; however, many of them are incomplete, slow, and/or produce
solutions with poor approximation quality (i.e., high ε). An algorithm is complete
if it always finds a solution when one exists (at least one Nash equilibrium is
guaranteed to exist in all finite games [18]). We present a new algorithm that is
complete and runs significantly faster than prior complete algorithms, and even
runs faster than the best incomplete algorithms. Our algorithm is based on a
novel quadratically-constrained mixed-integer program formulation that can be
solved using Gurobi’s non-convex quadratic solver [14]. We run experiments on
uniform random games with a variety of players and strategy sizes, as well as
several games produced from the GAMUT generator [19]. We compare our algo-
rithm against the best prior algorithms, which include several complete methods
as well as faster incomplete methods available on the GAMBIT suite [17].

2 Notation

A strategic-form game consists of a finite set of players N = {1, . . . , n}, a finite
set of pure strategies Si for each player i ∈ N , and a real-valued utility for each
player for each strategy vector (aka strategy profile), ui : ×iSi → R. We will
assume that the sets Si are disjoint, and for simplicity assume that all Si have
the same cardinality. For sj ∈ Si define the player function to be P (sj) = i
(which is well-defined under the assumption that the Si are disjoint). Suppose
that sjk ∈ Sik for k = 1 . . . n, and suppose that the ik ∈ N are all distinct. Then
for w ∈ N define ûw(sj1 , . . . , sjn) = uw(sm1 , . . . , smn

), where mq equals the jk

such that P (jk) = q (and therefore that smq
∈ Sq). That is, in the event that the

sjk are not in order of increasing value of the player P (sjk), the û function will
compute the utility assuming that the vector of strategies is listed in the order
of increasing players so that u can be properly applied. For example, suppose
that s1 ∈ S1, s2 ∈ S2, s3 ∈ S3. Then ûw(s2, s3, s1) = uw(s1, s2, s3), for w ∈ N .
This notation will be useful in order to provide more concise representations of
our optimization formulations.

A mixed strategy σi for player i is a probability distribution over pure strate-
gies, where σi(si′) is the probability that player i plays pure strategy si′ ∈ Si

under σi. Let Σi denote the full set of mixed strategies for player i. A strategy
profile σ∗ = (σ∗

1 , . . . , σ
∗
n) is a Nash equilibrium if ui(σ∗

i , σ∗
−i) ≥ ui(σi, σ

∗
−i) for all

σi ∈ Σi for all i ∈ N , where σ∗
−i denotes the vector of the components of strategy

σ∗ for all players excluding player i. For a given candidate strategy profile σ∗,
define ε = ε(σ∗) = maxi maxσi∈Σi

[
ui(σi, σ

∗
−i) − ui(σ∗

i , σ∗
−i)

]
.
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3 Algorithm

We first describe a linear mixed-integer feasibility program formulation for com-
puting Nash equilibrium in two-player general-sum games [22]. That work pre-
sented four different formulations each using a different objective function and
set of constraints, and demonstrated that the first one significantly outperformed
the other three. The first formulation was a feasibility program with no objec-
tive function, in which the set of Nash equilibria correspond exactly to feasible
solutions. We use this as a starting point for our new multiplayer formulations.

3.1 Linear Mixed-Integer Feasibility Formulation for Two-Player
Nash Equilibrium

We quote from the original description of the program formulation for two-player
Nash equilibrium, and present the formulation below:

In our first formulation, the feasible solutions are exactly the equilibria of
the game. For every pure strategy si, there is binary variable bsi

. If this
variable is set to 1, the probability placed on the strategy must be 0. If it is
set to 0, the strategy is allowed to be in the support, but the regret of the
strategy must be 0. The formulation has the following variables other than
the bsi

. For each player, there is a variable ui indicating the highest possible
expected utility that that player can obtain given the other player’s mixed
strategy. For every pure strategy si, there is a variable psi

indicating the
probability placed on that strategy, a variable usi

indicating the expected
utility of playing that strategy (given the other player’s mixed strategy),
and a variable rsi

indicating the regret of playing si. The constant Ui

indicates the maximum difference between two utilities in the game for
player i: Ui = maxsh

i ,sl
i∈Si,sh

1−i,s
l
1−i∈S1−i

[
ui(sh

i , sh
1−i) − ui(sl

i, s
l
1−i)

]
. The

formulation follows below [22].

Find psi
, ui, usi

, rsi
, bsi

subject to:
∑

si∈Si

psi
= 1 for all i (1)

usi
=

∑

s1−i∈S1−i

ps1−i
ui(si, s1−i) for all i, si ∈ Si (2)

ui ≥ usi
for all i, si ∈ Si (3)

rsi
= ui − usi

for all i, si ∈ Si (4)
psi

≤ 1 − bsi
for all i, si ∈ Si (5)

rsi
≤ Uibsi

for all i, si ∈ Si (6)
psi

≥ 0 for all i, si ∈ Si (7)
ui ≥ 0 for all i (8)
usi

≥ 0 for all i, si ∈ Si (9)
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rsi
≥ 0 for all i, si ∈ Si (10)

bsi
binary in {0, 1} for all i, si ∈ Si (11)

The first four constraints ensure that the psi
values constitute a valid

probability distribution and define the regret of a strategy. Constraint 5
ensures that bsi

can be set to 1 only when no probability is placed on
si. On the other hand, Constraint 6 ensures that the regret of a strategy
equals 0, unless bsi

= 1, in which case the constraint is vacuous because
the regret can never exceed Ui. (Technically, Constraint 3 is redundant as
it follows from Constraints 4 and 10.) [22]

For clarity, we will rewrite the system with the redundant Constraint 3
removed, as our extensions will be based on this formulation.

Find psi
, ui, usi

, rsi
, bsi

subject to:
∑

si∈Si

psi
= 1 for all i

usi
=

∑

s1−i∈S1−i

ps1−i
ui(si, s1−i) for all i, si ∈ Si

rsi
= ui − usi

for all i, si ∈ Si

psi
≤ 1 − bsi

for all i, si ∈ Si

rsi
≤ Uibsi

for all i, si ∈ Si

psi
≥ 0 for all i, si ∈ Si

ui ≥ 0 for all i

usi
≥ 0 for all i, si ∈ Si

rsi
≥ 0 for all i, si ∈ Si

bsi
binary in {0, 1} for all i, si ∈ Si

3.2 New Formulation for Three-Player Nash Equilibrium

We now describe an extension of the previous two-player formulation to three
players. To do this, we introduce new variables, psi,sj

, which denote the product
of the variables psi

and psj
. Note that these new product constraints are now

quadratic (while all other constraints remain linear).
Find psi

, ui, usi
, rsi

, bsi
, psi,sj

subject to:
∑

si∈Si

psi
= 1 for all i

usi
=

∑

sj∈S2

∑

sk∈S3

psj ,sk
u1(si, sj , sk) for all si ∈ S1

usj
=

∑

si∈S1

∑

sk∈S3

psi,sk
u2(si, sj , sk) for all sj ∈ S2
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usk
=

∑

si∈S1

∑

sj∈S2

psi,sj
u3(si, sj , sk) for all sk ∈ S3

psi,sj
= psi

· psj
for all si ∈ S1, sj ∈ S2

psi,sj
= psi

· psj
for all si ∈ S1, sj ∈ S3

psi,sj
= psi

· psj
for all si ∈ S2, sj ∈ S3

rsi
= ui − usi

for all i, si ∈ Si

psi
≤ 1 − bsi

for all i, si ∈ Si

rsi
≤ Uibsi

for all i, si ∈ Si

psi
≥ 0 for all i, si ∈ Si

ui ≥ 0 for all i

usi
≥ 0 for all i, si ∈ Si

rsi
≥ 0 for all i, si ∈ Si

bsi
binary in {0, 1} for all i, si ∈ Si

We can simplify the presentation by condensing the constraints for usi
and

for the product variables psi,sj
, using the notation for û defined in Sect. 2.

Find psi
, ui, usi

, rsi
, bsi

, psi,sj
subject to:

∑

si∈Si

psi
= 1 for all i

usi
=

∑

sj∈SJ

∑

sk∈SK

psj ,sk
ûP (si)(si, sj , sk) for all I, J �= I,K �= I, J < K, si ∈ SI

psi,sj
= psi

· psj
for all I, J ∈ N, I < J, si ∈ SI , sj ∈ SJ

rsi
= ui − usi

for all i, si ∈ Si

psi
≤ 1 − bsi

for all i, si ∈ Si

rsi
≤ Uibsi

for all i, si ∈ Si

psi
≥ 0 for all i, si ∈ Si

ui ≥ 0 for all i

usi
≥ 0 for all i, si ∈ Si

rsi
≥ 0 for all i, si ∈ Si

bsi
binary in {0, 1} for all i, si ∈ Si

3.3 New Formulation for Four-Player Nash Equilibrium

We further extend our 3-player formulation to 4 players by introducing new vari-
ables psi,sj ,sk

. We still retain the psi,sj
variables as before, and include additional

constraints of the form psi,sj ,sk
= psi

·psj ,sk
. Thus, despite the expected utilities

being cubic in the original variables psi
, we are able to obtain a formulation that

only has linear and quadratic constraints.
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Find psi
, ui, usi

, rsi
, bsi

, psi,sj
, psi,sj ,sk

subject to:
∑

si∈Si

psi
= 1 for all i

usi
=

∑

sj∈S2,sk∈S3,sm∈S4

psj ,sk,sm
u1(si, sj , sk, sm) for all si ∈ S1

usj
=

∑

si∈S1,sk∈S3,sm∈S4

psi,sk,sm
u2(si, sj , sk, sm) for all sj ∈ S2

usk
=

∑

si∈S1,sj∈S2,sm∈S4

psi,sj ,sm
u3(si, sj , sk, sm) for all sk ∈ S3

usm
=

∑

si∈S1,sj∈S2,sk∈S3

psi,sj ,sk
u4(si, sj , sk, sm) for all sm ∈ S4

psi,sj
= psi

· psj
for all si ∈ S1, sj ∈ S2

psi,sj
= psi

· psj
for all si ∈ S1, sj ∈ S3

psi,sj
= psi

· psj
for all si ∈ S1, sj ∈ S4

psi,sj
= psi

· psj
for all si ∈ S2, sj ∈ S3

psi,sj
= psi

· psj
for all si ∈ S2, sj ∈ S4

psi,sj
= psi

· psj
for all si ∈ S3, sj ∈ S4

psi,sj ,sk
= psi

· psj ,sk
for all si ∈ S1, sj ∈ S2, sk ∈ S3

psi,sj ,sk
= psi

· psj ,sk
for all si ∈ S1, sj ∈ S2, sk ∈ S4

psi,sj ,sk
= psi

· psj ,sk
for all si ∈ S1, sj ∈ S3, sk ∈ S4

psi,sj ,sk
= psi

· psj ,sk
for all si ∈ S2, sj ∈ S3, sk ∈ S4

rsi
= ui − usi

for all i, si ∈ Si

psi
≤ 1 − bsi

for all i, si ∈ Si

rsi
≤ Uibsi

for all i, si ∈ Si

psi
≥ 0 for all i, si ∈ Si

ui ≥ 0 for all i

usi
≥ 0 for all i, si ∈ Si

rsi
≥ 0 for all i, si ∈ Si

bsi
binary in {0, 1} for all i, si ∈ Si

As for the 3-player version we can simplify the presentation by condensing
constraints and utilizing û.

Find psi
, ui, usi

, rsi
, bsi

, psi,sj
, psi,sj ,sk

subject to:
∑

si∈Si

psi = 1 for all i

usi =
∑

sj∈SJ

∑

sk∈SK

∑

sm∈SM

psj ,sk,sm ûP (si)(si, sj , sk, sm)

for all I, J �= I, K �= I, M �= I, J < K < M, si ∈ SI
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psi,sj = psi · psj for all I, J ∈ N, I < J, si ∈ SI , sj ∈ SJ

psi,sj ,sk = psi · psj ,sk for all I, J, K ∈ N, I < J < K, si ∈ SI , sj ∈ SJ , sk ∈ SK

rsi = ui − usi for all i, si ∈ Si

psi ≤ 1 − bsi for all i, si ∈ Si

rsi ≤ Uibsi for all i, si ∈ Si

psi ≥ 0 for all i, si ∈ Si

ui ≥ 0 for all i

usi ≥ 0 for all i, si ∈ Si

rsi ≥ 0 for all i, si ∈ Si

bsi binary in {0, 1} for all i, si ∈ Si

3.4 Five-Player Nash Equilibrium

We can create a similar extension for 5 players that again only uses linear and
quadratic constraints.

Find psi
, ui, usi

, rsi
, bsi

, psi,sj
, psi,sj ,sk

, psi,sj ,sk,sm
subject to:

∑

si∈Si

psi = 1 for all i

usi
=

∑

sj∈SJ

∑

sk∈SK

∑

sm∈SM

∑

so∈SO

psj,sk,sm,so ûP (si)
(si, sj , sk, sm, so)∀I, {J,K,M,O} �= I,

J < K < M < O, si ∈ SI

psi,sj = psi · psj for all I, J ∈ N, I < J, si ∈ SI , sj ∈ SJ

psi,sj ,sk = psi · psj,sk for all I, J,K ∈ N, I < J < K, si ∈ SI , sj ∈ SJ , sk ∈ SK

psi,sj ,sk,sm = psi · psj,sk,sm for all I, J,K,M ∈ N, I < J < K < M, si ∈ SI , sj ∈ SJ , sk ∈ SK , sm ∈ SM

rsi = ui − usi
for all i, si ∈ Si

psi ≤ 1 − bsi for all i, si ∈ Si

rsi ≤ Uibsi for all i, si ∈ Si

psi ≥ 0 for all i, si ∈ Si

ui ≥ 0 for all i

usi
≥ 0 for all i, si ∈ Si

rsi ≥ 0 for all i, si ∈ Si

bsi binary in {0, 1} for all i, si ∈ Si

3.5 New Formulation for N-Player Nash Equilibrium

One can easily see how our formulation can be generalized to one for n play-
ers that has only linear and quadratic constraints. There will be mk

(
n
k

)
of

the psi1 ,...,sik
terms of length k for each 1 ≤ k ≤ n − 1, where m = |Si|

is the number of pure strategies for each player. So the total number of



116 S. Ganzfried

the p terms will be
∑n−1

k=1 mk
(
n
k

)
. From the binomial theorem, we know that

(1 + m)n =
∑n

k=0 mk
(
n
k

)
. So the total number of the p terms is

(1 + m)n − m0

(
n

0

)
− mn

(
n

n

)
= (1 + m)n − 1 − mn < (1 + m)n

Note that while this is exponential in the number of players, the size of the game
representation is n · mn, since we must specify a payoff for each player for each
of mn pure strategy profiles, which is also exponential in the number of players.

Note that our algorithm does not actually require all of the bilinear p terms;
for example, in the 4-player case none of the terms psi,sj

for si ∈ S1, sj ∈
S2 are used to form any of the psi,sj ,sk

terms. We keep these terms in our
formulation only to prevent from further complicating presentation. Removing
such extraneous terms would reduce the memory and potentially runtime of the
algorithm, though the number of bilinear terms would be still exponential in the
number of players. This is not an issue for our experiments since Gurobi removes
unused variables automatically during its presolve procedure.

3.6 Computation of Nash Equilibrium from New Quadratic
Program Formulation

While we have been able to formulate the problem of computing a Nash equi-
librium for n ≥ 3 players as a quadratically-constrained program (QCP), unfor-
tunately the constraint matrix is not positive semidefinite making the overall
program non-convex and more challenging to solve. The best commercial solvers
could previously solve convex QCPs but not non-convex QCPs, and the best
approach was to approximate products of variables by using piecewise linear
approximations [4]; however, this approach introduces a large number of new
variables and constraints, leading to large run times, as well as an added layer
of approximation error. Recently Gurobi has released an approach that is able
to solve non-convex programs with quadratic objective and constraints [14]. The
solver allows for both continuous and integral variables, and so can handle mixed-
integer quadratically-constrained programs (MIQCPs), which is what we are
interested in. The new method addresses non-convex bilinear constraints using
an analogue of the simplex algorithm with McCormick envelopes for constructing
relaxations with new approaches for cutting planes and spatial branching.

4 Experiments

For our first set of experiments, we generated games with payoffs uniformly
random in [0,1] for a variety of number of players n and number of pure strategies
m. We used the same parameter values as those used for previous experiments for
complete algorithms [3]. For each set of parameter values (n,m), we generated
1,000 random games as the prior work had done (with the exception of the
largest game n = 5,m = 3 for which we generated 100 games). We set a time
limit of 900 s for the random game experiments as the prior work had done.
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For all experiments with our algorithm we used version 9.0 of Gurobi’s non-
convex MIQCP solver, with feasibility tolerance parameter set to 0.0001. For
the GAMUT experiments we set the NumericFocus parameter to 2. We used an
Intel Core i7-8550U at 1.80GHz with 16 GB of RAM under 64-bit Windows 10
(8 threads). Prior experiments had been done with similar hardware: Intel Core
i7-6500U at 2.50GHz with 16 GB of RAM under 64-bit Windows 7 [3].

The results from experiments with our MIQCP algorithm on random games
are shown in Table 1. For all games other than the largest class (n = 5,m = 3)
the algorithm had very fast runtimes (in most cases averaging a fraction of a
second), with zero runs over the time limit. For the largest class the algorithm hit
the time limit in 58% of instances. Analogous results for the best prior complete
algorithms are shown in Table 2. Other than for n = 5,m = 3, our algorithm
outperformed both other algorithms by orders of magnitude in runtime.

Table 1. Results of new MIQCP algorithm for random games.

n mAvg. time(s)Median time(s)OverTime%

3 2 0.00707 0.0 0
3 3 0.02342 0.02901 0
3 5 0.85763 0.26544 0
4 2 0.02598 0.03124 0
4 3 1.35334 0.40505 0
5 2 0.11873 0.09373 0
5 3 607.68524 900.0 58

Table 2. Results of prior complete algorithms for random games [3].

Exclusion Method k-Uniform Search
n mAvg. time(s)Median time(s)OverTime% k Avg. time(s)OverTime%

3 2 0.04 0.02 0 2/180 49 1
3 3 26 1.2 1 3/18 191 29
3 5 900 900 100 5 94 33
4 2 99 0.48 8 2/40 23 15
4 3 352 87 30 3/8 85 33
5 2 125 2.7 10 2/8 1.0 30
5 3 520 589 46 3 7.9 36

The Exclusion Method is a complete tree-search-based method that has the
best upper bound with respect to the number of players n [3]. The algorithm
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divides the search space into smaller regions and examines whether an equilib-
rium can exist in the region. The k-Uniform Search algorithm is based on an
improvement to a prior exhaustive complete method [2] where a search is per-
formed over the space of k-uniform strategies for incrementally increasing k. (A
k-uniform strategy is a strategy where all probabilities are integer multiples of
1
k .) This approach was used as a benchmark in prior work [3]. Note that these
algorithms do not involve the use of a commercial solver such as Gurobi.

We next experimented on several games produced from the GAMUT gen-
erator [19]. We used the same games and parameter settings as used in prior
work [3]. In particular, we used the variants with 3 players and 3 actions per
player. For the congestion game class we used 2 for the number of facilities
parameter, and for the covariant game we used r = −0.5. All other parameters
were generated randomly (as the prior experiments had done). We generated
1,000 games from each class using these distributions.

Results for our new MIQCP algorithm over the GAMUT games are shown
in Table 3. We normalized all payoffs to be in [0,1] (by subtracting the smallest
payoff from all the payoffs and then dividing all payoffs by the difference between
the max and min payoff, or just dividing by the max payoff if the min is non-
negative). Note that linear transformations of the payoffs exactly preserve Nash
equilibria, so this normalization would have no effect on the solutions. For some
classes several games generated had NaN payoff values, and we ignored these
games (we report the number of valid games). We can see that our algorithm
ran very quickly for all classes and correctly solved all instances.

Table 3. Results of new MIQCP algorithm for GAMUT games.

Game class # valid gamesAvg. time(s)# NotSolved

Bertrand oligopoly 970 0.00106 0
Bidirectional LEG 1000 0.00508 0

Collaboration 1000 0.00962 0
Congestion 1000 0.00492 0
Covariant 1000 0.02984 0
Polymatrix 997 0.00803 0

Random graphical 1000 0.01615 0
Random LEG 1000 0.00475 0
Uniform LEG 1000 0.00468 0

Analogous results for the prior best complete algorithms for these same game
classes are in Table 4. We can see again that our algorithm typically runs orders
of magnitude faster than the others. Note that for these results the NotSolved%
column refers to the percentage of runs where the ε of the computed strategies
exceeded 0.001 (this was the criterion from prior work [3]).
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Table 4. Results of prior complete algorithms for GAMUT games [3].

Exclusion Method k-Uniform Search

Game class Avg. time(s) NotSolved%Avg. time(s) NotSolved%
Bertrand oligopoly 13.7 0 0.01 0
Bidirectional LEG 159 0 0.013 0

Collaboration 2.8 0 0.0009 0
Congestion 29 0 0.027 0
Covariant 95 0 80 16
Polymatrix 172 0 27.2 7

Random graphical 35000 0 0.05 0
Random LEG 880 0 0.02 0
Uniform LEG 793 0 0.02 0

Table 5 shows results for these same game classes using the best algorithms
from the GAMBIT software suite [17]. The numbers are the average computation
times in seconds and the parentheses show the percentage of instances that were
not solved (code got stuck, empty output, or accuracy not within the given ε =
0.001). All of these methods are incomplete, and in many cases the NotSolved%
was quite large. The runtimes of our algorithm are still about one order of
magnitude better than these methods, while also correctly solving all instances.

Table 5. Computation times for GAMBIT algorithms and % of instances not solved [3].

Game class gnm ipa enumpoly simpdiv liap logit

Bertrand oligopoly 0.05 (30) 0.05 (75) 0.04 (50) 0.05 0.24 (99) 0.06
Bidirectional LEG 0.09 (0.3) 0.05 (58) 0.84 (1) 0.06 (0.1) 0.24 (99) 0.06 (0.1)

Collaboration 0.24 (0.1) 0.04 3.3 (50) 0.05 0.34 (99) 0.06 (0.3)
Congestion 0.05 (0.2) 0.05 (85) 0.05 (0.6) 0.05 (0.1) 0.21 (100) 0.05
Covariant 0.13 (3) 0.05 (94) 36 0.67 (2.8) 0.31 (100) 0.05 (1)
Polymatrix 0.06 (1) 0.04 (79) 0.04 (50) 0.07 (0.3) 0.3 (92) 0.05 (0.4)

Random graphical 0.08 (3) 0.04 (96) 6.3 (6) 0.17 (3) 0.31 (99) 0.06 (0.3)
Random LEG 0.05 (1) 0.04 (59) 8.1 (2) 0.05 (0.6) 0.24 (99) 0.06
Uniform LEG 0.07 (0.4) 0.05 (55) 0.04 (17) 0.05 0.23 (99) 0.06

The algorithms are the homotopy method [12] (gnm), its modification using
iterated polymatrix approximation [13] (ipa), an algorithm based on solving
a polynomial system of equations [20] (enumpoly), the simplicial subdivision



120 S. Ganzfried

method [15] (simpdiv), a function minimization approach (liap), and the quantal
response method [16,24] (logit).1

Our final comparison is with two recently popular algorithms, counterfac-
tual regret minimization [26] and fictitious play [5,21]. These are iterative self-
play procedures that have been proven to converge to Nash equilibrium in
two-player zero-sum games, but not for more than two players. However, they
can both be run for more than two players, and have been demonstrated to
obtain strong empirical performance in certain large extensive-form imperfect-
information games. For example, an agent that utilized counterfactual regret
minimization (CFR) recently defeated strong humans in 6-player no limit Texas
hold ’em [6]. Both CFR and fictitious play (FP) can be extremely effective at
quickly approximating equilibrium strategies; however, they can also lead to
strategies with extremely high ε, even for very small games. So if the goal is
to compute an exact Nash equilibrium in multiplayer games, CFR and FP are
ineffective. Table 6 shows recent results of CFR and FP for games with uniform
random payoffs in [0,1] [10]. We can see that in several cases the average values of
ε are quite large, and in all cases it exceeds the previously designated benchmark
value of 0.001 [3].

Table 6. Results of regret minimization and fictitious play in random games [10].

n m # games# algorithm iterationsAvg. CFR εAvg. FP ε

3 3 100,000 10,000 0.00768 0.00749
3 5 100,000 10,000 0.02312 0.02244
3 10 10,000 10,000 0.05963 0.05574
4 3 100,000 10,000 0.01951 0.01950
4 5 10,000 10,000 0.05121 0.04635
4 10 10,000 10,000 0.08315 0.06661
5 3 10,000 10,000 0.03505 0.03303
5 5 10,000 10,000 0.06631 0.05447
5 10 10,000 1,000 0.06350 0.04341

5 Applicability to Security

While the algorithm applies to general strategic-form games, we briefly highlight
how it can be specifically applied to security. Many national security scenarios
involve multiple players behaving strategically and are modeled as games. For

1 These experiments were performed using GAMBIT version 15.0 (except 16.0 for
simpdiv as it had a bug in 15.0; only simpdiv changed from 15.0 to 16.0, so only
that algorithm was rerun with version 16.0) [3].
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example, Table 7 depicts a scenario in which a defender (i.e., the police) selects
a terminal to defend and an adversary selects a terminal to attack [23]. The
players’ moves may be modeled as being simultaneous or sequential, and often
the game is not zero sum. The numerical values for payoffs are often calculated
by domain experts and assumed to be realistic valuations of the scenario (there
has also been research done on Bayesian games which model uncertainty over
the payoffs). While a full scenario may involve many different participants and
actions, in many cases it may be possible to construct a game with a small
number of players and strategies that captures critical aspects of the game. It is
important to be able to quickly and accurately solve such game models.

Table 7. Example security game. Defender selects row and adversary selects column.

Terminal 1Terminal 2

Terminal 1 5, −3 −1, 1
Terminal 2 −5, 5 2, −1

6 Additional Related Research

A preliminary version of this paper appeared on arXiv in February 2020.2 A
subsequent work has generalized our approach to solve a program with a smaller
number of bilinear terms [25], using our algorithm as a baseline for comparison.

7 Conclusion

We presented a new complete algorithm for computing Nash equilibrium in
multiplayer games based on a mixed-integer quadratically-constrained feasibility
program formulation. Our algorithm outperforms the previously best complete
algorithms by orders of magnitude for all but the largest game class we consid-
ered. Our algorithm even has significantly smaller runtimes than the best prior
incomplete methods (which also frequently fail to compute a solution). We also
demonstrated that recently popular iterative algorithms have significant approx-
imation error and are unsatisfactory for the goal of computing an exact Nash
equilibrium. We ran experiments on a wide variety of game classes, and expect
our algorithm to be applicable to important game models in economics, political
science, security, and many other fields.

Disclosure of Interests. The author has no competing interests to declare that are
relevant to the content of this article. This research received no funding.

2 https://arxiv.org/abs/2002.04734v1.
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Abstract. We introduce Contested Logistics Games, a variant of logis-
tics problems that account for the presence of an adversary that can dis-
rupt the movement of goods in selected areas. We model this as a large
two-player zero-sum one-shot game played on a graph representation of
the physical world, with the optimal logistics plans described by the
(possibly randomized) Nash equilibria of this game. Our logistics model
is fairly sophisticated, and is able to handle multiple modes of transport
and goods, accounting for possible storage of goods in warehouses, as
well as Leontief utilities based on demand satisfied. We prove compu-
tational hardness results related to equilibrium finding and propose a
practical double-oracle solver based on solving a series of best-response
mixed-integer linear programs. We experiment on both synthetic and
real-world maps, demonstrating that our proposed method scales to rea-
sonably large games. We also demonstrate the importance of explicitly
modeling the capabilities of the adversary via ablation studies and com-
parisons with a naive logistics plan based on heuristics.

Keywords: Logistics · Game theory · Equilibrium computation

1 Introduction

Logistics is a multi-million dollar business with applications in numerous real-
world domains. In this paper, we study a variant we call Contested Logistics
(CL). CL features two players, customarily identified with the names Blue and
Red. Blue is the logistics player, while Red is an interdiction player seeking to
reduce Blue’s utility. CL captures the strategic interaction between Red and Blue
as a two-player zero-sum one-shot game. A solution to the game is identified by
the Nash equilibrium (NE) solution concept.
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CL is motivated by military considerations, where logistics may be disrupted
by an adversary, and robustness considerations, where logistics may be disrupted
by acts of God, unforeseen failures, political instability, or other factors. Attacks
on supply lines have been extensively documented in real military settings, and
are often viewed as more effective than direct kinetic confrontation [30]. Similarly,
geopolitical powers such as the US, China, and the EU seek to diversify their
supply chains with the intention of being robust against a possible outbreak of
hostilities [16]. Likewise, the recent Evergreen Suez canal blockage incident is a
painful reminder of the potential risks of having a single-point of failure [28].

While the presence of adversaries in logistics is not new [9], the CL model
differs from prior work in that (i) it does not assume a particular behavior of
the adversary, instead allowing Red to act in a manner that most hurts Blue,
and (ii) we allow for very dramatic attacks by Red, completely destroying routes
or segments of railroads, as opposed to relatively tame effects like reducing a
route’s capacity or introducing small uncertainties in supply or demand.

The inclusion of Red introduces game-theoretic considerations. Since Blue’s
logistics and Red’s interdiction plans are chosen simultaneously, the resultant
Nash equilibrium is typically randomized. Additionally, the computation of the
equilibrium poses significant challenges. For instance, the number of possible
logistics plans is doubly exponential, while the number of interdiction plans grows
exponentially with Red’s budget. Thus, explicitly specifying the CL problem as a
zero-sum bimatrix game is not practical. Our main contributions are as follows:

– We formally propose the framework of Contested Logistics (CL) games, a
novel variant of logistics planning that accounts for Red’s capabilities. Our
min-max formulation explicitly models Red actively seeking to thwart Blue,
via relatively drastic measures compared to prior work. We show that an
optimal strategy exists for both players via von Neumann’s minimax theorem.

– We prove that computing a Nash eq., as well as best responses of Red and
Blue, are NP-hard problems. Nonetheless, the best responses of Blue (respec-
tively, Red) to a fixed randomized Red (resp., Blue) strategy can be written
compactly as a polynomial-size mixed integer linear program (MILP).

– We propose solving CL games via a double oracle method, utilizing our best-
response MILPs. We demonstrate scalability via experiments.

– We conduct experiments using real-world inspired scenarios, observing the
following. (i) Optimal solutions to the CL problem exhibit counter-intuitive
behavior, providing insights into what the solution to the CL problem may
look like in practice. (ii) A naïve, heuristics-based approach for Blue results in
a highly exploitable strategy, suggesting that explicitly accounting for Red’s
capabilities is important. (iii) The cost of overestimating Red’s capabilities
(i.e., budget) is relatively low, but conversely, underestimating Red’s capa-
bilities leads to a drastic decrease in performance, reaffirming the adage that
“it is better to be safe than sorry”.
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2 Related Work

This paper is related to several fields spanning across disciplines. We concentrate
on the fields most pertinent to our game-theoretic model. For traditional (non-
adversarial) logistics, refer to the established literature [17,20,33].

Logistics and Routing Models. Logistics in a contested environment, where
adversaries actively interfere with supply chain operations, has been explored in
various contexts, especially within military logistics [4,24]. Many existing mod-
els assume a simplified model of Red, who acts blindly or with limited informa-
tion and follows a fixed (deterministic or stochastic) behavior [5,22,37]. While
bi-level optimization is sometimes incorporated, the solutions typically remain
deterministic, limiting their ability to adapt to more dynamic adversaries [6].

Vehicle routing problems involve optimizing routes for vehicles delivering
goods or services. The literature on (robust) routing strategies is extensive, but
the typical sources of uncertainty in these models are costs, demands, time win-
dows, or customers, rather than adversaries [1,27,32,43]. Models involving adver-
sarial elements face similar challenges as those in the logistics literature. They
often assume either simplistic probabilistic models [2,9] or bi-level models with
a single vehicle, as seen in ambush avoidance or hazardous materials transport
literature [18,29,36]. Alternatively, they provide deterministic solutions, as in
routing interdiction problems [8,13,35].

Game-Theoretic Models. Network interdiction games explore optimal arcs in
a network for interdiction purposes, initially studied in [45] and applied in cyber-
security, cyberphysical security, or supply-chain attacks [40,41,44,45]. These
models typically focus on disrupting traversal paths without accounting for the
coordination required among multiple connectors, crucial in logistics scenarios.

Security games have seen practical applications, with defenders choosing dis-
tributions over targets and attackers selecting targets to attack [3,23,34,38].
The simplest versions of such games enjoy polynomial-time solvers, even in the
general-sum case [14,25]. Many developments have been made to account for
large but structured strategy spaces such as defender target schedules [26] and
repeated interactions [19]. While efficient in many cases, they often simplify
strategies and lack modeling depth for logistics movement and coordination.

Another notable class of games are extensive-form games (EFGs), which are
played on game trees where players decide actions at each information set [39].
Notably these were used to generate superhuman poker AIs [10–12]. For CL
settings, EFGs could be used to model sequential CL problems, though the action
spaces would become potentially prohibitively large. In this paper we focus on
single-shot CL problems, which are easier to model and solve, but sequential CL
problems are an interesting future direction.

3 Contested Logistics

CL games are played on a directed graph whose nodes correspond to different
types of locations—cities, provinces, towns, et cetera. There are several types
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of packages (that is, resources) available that may be transported. Some of the
nodes are specially designated as demand, supply, or warehouse nodes. At ware-
houses, packages may be dropped off and stored. To facilitate transportation of
packages, there are several connectors (for instance, trucks, trains, or planes)
which may be used to transport packages between locations; what a connec-
tor can carry, its capacity, and where it can traverse, i.e., edges in the graph,
are connector-specific. For example, aircraft cannot carry packages that are too
heavy, and while trains have a larger capacity than trucks, they are restricted
to traversing only railroads.

Given these specifications, the game proceeds as follows. Red chooses a set
of edges to interdict, subject to budget constraints. Blue then decides what,
where, when, and how packages are sent from supply to demand nodes using the
connectors available. Blue aims to satisfy as much demand as possible within
a specified time horizon. The game is zero-sum, i.e., Red’s goal is to minimize
demand satisfied. We adopt a two-stage approach for Blue’s logistic plans. In
the routing phase, Blue selects where each connector should be routed without
committing to any loading. The individual routes can (and often are) correlated
across connectors, but are chosen concurrently with Red’s decision of where to
interdict. In the loading phase, Blue observes where Red has chosen to inter-
dict, and uses this information to select a suitable load for connectors, without
changing their routes. Any connector that was interdicted is forbidden from car-
rying loads after the point of interdiction, but may still be utilized prior to that.
This two-phase approach was introduced by [7], and models situations where
unlike routing, loading decisions can be changed easily and on-the-fly. The app-
roach also allows some level of recourse by Blue, while still having a single-shot
zero-sum game model, which is preferable from a computational standpoint.

Formally, we represent a CL game as a directed physical graph G = (V,E).
The nodes in G represent locations in the physical world Blue traverses. The
edges E can be interdicted by Red, affecting Blue’s ability to enact their logistics.

3.1 Blue’s Strategy Space

On the physical graph G = (V,E), Blue has a subset of nodes W ⊆ V designated
as warehouses, where they can store packages that are currently not being moved
around. We assume there is at most one warehouse in each node. Each warehouse
has an initial (possible zero) supply, given by a non-negative function S : W ×
P → R

+
0 , and a demand for packages, given by a function D : W × P → R

+
0 .

Moving the packages is done by a set of connectors C. With each connector
c ∈ C there is an associated subset of edges Ec ⊆ E the connector may use to
move across the physical graph, and a function M : C×E → Z

+ determining how
many timesteps does it take the connector to cross an edge. We assume this value
is infinite for the edges the connector cannot use. In addition, each connector
has a designated initial location given by a function L : C → W, and weight
and volume capacities given by functions Wmax : C → R

+ and Vmax : C → R
+,

respectively. Moreover, Blue has a set of package types P, each with its associated
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single unit weight W : P → R
+, and single unit volume V : P → R

+. Finally, all
movement happens over a finite number of discrete timesteps T = {0, 1, . . . , T}.

For a given connector c ∈ C, based on its initial location L(c), movement
speed M(c, e), accessible edges Ec, and timesteps T , we unroll the physical graph
into individual connector-specific layered directed graphs Gc = (V, Ec), where
V = (Vt)t∈T is a series of copies of the physical nodes spread across time. For an
edge e ∈ E , we denote by V−(e) the tail node of e and V+(e) the head node. The
edges between the individual layers are found by a simple breadth-first search
from the connector’s initial location. We assume that no connector can cross
more than a single edge in the physical graph in one timestep. However, note
that the edges can jump layers, in case it takes the connector more than one
timestep to cross an edge. Note that this unrolling process does not create a
exponentially sized tree but a compact layered DAG (see Fig. 1).

Fig. 1. Physical graph G and layered graphs Gc1 , Gc2 obtained by unrolling G over 3
steps. Connectors c1 and c2 start at A and B, respectively. G has a loop at A for c1
only, taking 2 steps to cross. All the other edges can be crossed in a single timestep by
either connector. Unreachable nodes are in white.

Due to the construction, the layered graph edges in general differ across the
connectors, whereas the nodes in the individual layers are the same. Each v ∈ V
corresponds to some node v ∈ V laying in layer t and we denote this copy of
node v as v = vt. For an edge e ∈ Ec, we denote the corresponding edge in the
physical graph as E(e). E(e) is always a singleton. Blue’s action space consists
of paths in these layered graphs, one per each connector, and can be encoded as
solutions to the following feasibility MILP:

1 =
∑

e∈E−
c (L(c)0)

fc(e) ∀c ∈ C

∑

e∈E−
c (vt)

fc(e) =
∑

e∈E+
c (vt)

fc(e) ∀c ∈ C, ∀t ∈ T , ∀v ∈ V

fc(e) ∈ {0, 1} ∀c ∈ C, ∀e ∈ Ec.

(F)

We call a feasible tuple of connector paths a logistics plan and denote it λ ∈ Λ,
with λc = (ec,1, . . . , ec,k) being a path of a connector c. For each logistics plan
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we have (potentially many) associated feasible package flows, described by the
following set of constraints R(λ), starting with the initial supply equation

S(w, p) = sw0,p ∀w ∈ W, ∀p ∈ P, (R.1)

then the flow conservation constraints, distinguishing between physical locations
that serve or serve not as warehouses

lc,p(ec,i) = lc,p(ec,i+1) ∀c ∈ C, ∀p ∈ P
∀ec,i ∈ λc : V +(ec,i) �∈ W (R.2)

swt,p +
∑

c∈C,e∈λc:V+(e)=wt

lc,p(e) = swt+1,p +
∑

c∈C,e∈λc:V−(e)=wt

lc,p(e) ∀t ∈ T , ∀p ∈ P, ∀w ∈ W, (R.3)

and the weight and volume limits of each connector

Wmax(c) ≥
∑

p∈P
W (p)lc,p(e) ∀c ∈ C, ∀e ∈ λc (R.4)

Vmax(c) ≥
∑

p∈P
V (p)lc,p(e) ∀c ∈ C, ∀e ∈ λc (R.5)

lc,p(e) ≥ 0 ∀c ∈ C, ∀p ∈ P, ∀e ∈ λc (R.6)
swt,p ≥ 0 ∀t ∈ T ∪ {T + 1}, ∀p ∈ P, ∀w ∈ W, (R.7)

where the l variables encode the package flows, while the s variables record the
amount of packages stored in warehouses.

3.2 Red’s Strategy Space

The strategy space of Red is significantly simpler than Blue’s. Our model is
similar to the classic network interdiction problems, where Red chooses a subset
of edges in the physical graph G to interdict, given a budget B ≥ 0 and a cost
function C : E → R

+. Since Red operates on the physical graph instead of any
layered graph, we assume an edge is interdicted over the entire game. Red’s
action space is formed by all feasible solutions of the following MILP:

{
y ∈ {0, 1}|E| ∣∣ B ≥

∑

e∈E

C(e)y(e)
}

. (Y)

We call a feasible set of interdicted edges an interdiction plan and denote it ι ∈ I.

3.3 Utilities

We assume that Blue aims to maximize the (cumulative) Leontief value at each
location with demand D at the final timestep T , given a logistics plan λ and
feasible package flows l and s. The value is defined as

v(λ, s, l) =
∑

w∈W

P (w)max
{

min
p∈P,D(w,p)>0

swT ,p

D(w, p)
, U(w)

}
, (L)
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where P (w), U(w) are warehouse-specific payoffs per each unit and maximum
numbers of units, respectively, of satisfied demand.

Motivated by the randomized network interdiction problems [7], we make
the following two assumptions about the effects of Red’s interdiction plan ι on
Blue’s logistics λ. (i) Whenever a connector attempts to cross an interdicted
physical edge, it is destroyed together with its entire package load. Formally, the
interdicted logistics plan is hence a “truncated” plan

λc(ι) =

{
λc if ∀e ∈ λc : E(e) �∈ ι

(ec,1, . . . , ec,j) if ∀e ∈ (ec,1, . . . ec,j−1) : E(e) �∈ ι and E(ec,j) ∈ ι.

(ii) While the logistics plan (i.e., the connector paths) is fixed, the package flows
are adaptive, optimizing the Leontief value for the Blue’s truncated plan. For a
pair (λ, ι), the utility u(λ, ι) can hence be described as the following LP1:

u(λ, ι) = max
s,l

v(λ(ι), s, l) such that R(λ(ι)) are satisfied, (U)

where R(·) refers to the set of flow constraints (R.1)–(R.7). Note that players
cannot alter their strategies once they begin moving, making it, indeed, a one-
shot game. We further assume the game is zero-sum, i.e., Red minimizes u.

4 Computing Solutions of Contested Logistics

Our goal is to find a Nash equilibrium (NE), possibly mixed, over Blue’s logis-
tics plans and Red’s interdiction plans. Denote by Δb and Δr the probability
simplices over Λ and I respectively. Then, for some distribution over a player’s
plans xi ∈ Δi, xi(pi) is the probability that pi is played by player i ∈ {r, b}. The
NE problem reduces to solving the bilinear saddle point problem

min
xb∈Δb

max
xr∈Δr

Eλ∼xb,ι∼xr
[u(λ, ι)] = min

xb∈Δb

max
xr∈Δr

∑

λ∈Λ

∑

ι∈I

xb(λ) · xr(ι) · u(λ, ι).

Since Δb and Δr are both convex and compact sets, and the objective function is
convex-concave, the minimax theorem [31] guarantees the existence of a unique
value for the game. Nevertheless, determining the NE in CL games is computa-
tionally infeasible, as indicated already by the growth of the number of possible
logistics plans that is double exponential in the problem’s parameters.

Proposition 1. It is NP-hard in terms of |G|, |C|, |P|, and T to find a NE for
a contested logistics game with Leontief utilities given in Formulation U.

Proof. We employ a reduction from the 3-SAT problem. Assume we are given a
CNF having n variables and k clauses, where each clause has at most 3 literals.
We aim to determine the satisfiability of the formula. We construct a CL scenario
1 Note the formulation is indeed an LP because the inner minimization in formula-

tion (L) is easily linearized using an auxiliary variable for each warehouse.
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Fig. 2. The physical graph described in Proposition 1, serving as a game for the 3-SAT
problem we aim to reduce from. Each node in the top layer, denoted by xi, corresponds
to a variable xi in the SAT formula, which contains a total of n variables. The nodes
in the layer below signify a positive or negative assignment. Each assignment node is
connected to the clauses it satisfies. For example, in the depicted graph C1 = x1 ∨¬x2,
C2 = ¬x1 ∨x2, and Cn = x2 ∨xn. Edges available to the assignment connector starting
from x1 are solid, edges of the clause connectors starting from Cj are dashed. Every
path of the assignment connector of length 2n ending in the terminal node t encodes
a full assignment.

featuring a single type of package with unit weight and volume, and k + 1 con-
nectors: a single assignment connector constrained to weight and volume limits
of k, and k clause connectors with limits of 1. The physical graph is depicted in
Fig. 2. The top layer consists of a single node per each variable xi, and a terminal
node t. The layer below has two nodes per each xi, signifying a positive (T) or
a negative (F) assignment. The bottom layer contains one node per each clause.
Each of the xi nodes is connected to its assignment nodes. Each clause node has
an edge to a corresponding assignment node of every variable included in the
clause. Moreover, the assignment nodes of the variable xi, i < n are connected
to the variable node xi+1. The assignment nodes of xn are connected to t. The
first connector starts at node x1. Other connectors start at their corresponding
clause. Moving across each edge takes one time step. The outgoing edges from
the assignment nodes are not available to the connectors starting at the clause
nodes. The scenario’s time horizon is 2n. There are 2n + k + 2 warehouses: one
at x1, one at t, and one in every clause and assignment nodes. Only the clause
warehouses supply a single unit of the package each. There is only one demand
node, t, with demand k and both unit payoff and maximum units set to 1. Red
has budget 1, with each edge having a cost of 2, except the loop in t with cost 1.
Red’s action space is hence trivial. In the equilibrium, the assignment connector
collects as many packages from the satisfied clauses as possible. We will show
the value of the equilibrium is 1 if and only if the formula is satisfiable.



132 J. Černý et al.

→ Suppose there exists a satisfying assignment. Let the satisfying assignment
define the path of the assignment connector. For each clause, there exists a
literal that the assignment makes true. Let these literals define the paths of
the clause connectors. From the definition of the satisfying assignment, the
assignment connector’s path crosses all the paths of the clause connectors,
which enables it to pick up all k packages and bring them to t. The Leontief
utility at t is hence k/k = 1.

← If the value of the equilibrium is 1, then the assignment connector must have
picked up all k packages, meeting with all k clause connectors. Due to the
construction of the physical graph, the assignment connector can visit only
one of the assignment nodes for each variable, effectively encoding a variable
assignment. Because the clause nodes are connected with only those assign-
ment nodes that satisfy the clause, meeting with an assignment connector
corresponds to satisfying the clause. The path of the assignment connector
meeting all k clause connector hence encodes a satisfying assignment.

4.1 Best Response Complexity and Computation

Recall that Blue’s and Red’s (pure) best responses to fixed strategies xr and xb

are defined as λBR = argmaxλ∈Λ u(λ, xr) and ιBR = argminι∈I u(xb, ι), where
u(xb, ι) = Eλ∼xb

u(λ, ι) and u(λ, xr) = Eι∼xr
u(λ, ι). We note that while best

responses are closely related to NE computation, they are generally distinct
problems. There are classes of games where computing best responses is difficult
but finding a NE is easy, and vice versa [46]. Unfortunately, computing best
responses in CL games is also intractable. Indeed, intractability of Blue’s best
response follows directly from the proof construction of Proposition 1.

Corollary 1. Let Ĩ ⊆ I be of size k (possibly smaller than |I|) and x̃r be a
distribution with support Ĩ. Finding Blue’s best response against x̃r in a CL
problem with Leontief utilities is NP-hard in terms of |G|, |C|, |P|, T , and k.

Computing Blue’s best response can be done via a polynomially sized MILP.
Assume Red plays the interdiction plans ι1, . . . , ιk with probabilities x1

r, . . . , x
k
r .

For each ιi, let us denote the set of Blue’s edges in their layered graph that are
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interdicted by ιi as ιic = {e ∈ Ec : E(e) ∈ ιi}. The best response is formulated
as the following max-max BlueBR formulation (Fig. 3):

max
f∈F

max
l,s,g

∑

i∈[k]

∑

w∈W

P (w)xi
rg

i
w

S(w, p) = si
w0,p ∀i ∈ [k], ∀w ∈ W, ∀p ∈ P

∑

e∈E+
c (vt)\ιic

lic,p(e) =
∑

e∈E−
c (vt)

lic,p(e) ∀i ∈ [k], ∀c ∈ C, ∀p ∈ P,

∀t ∈ T \{0, T}, ∀v �∈ W

lic,p(e) ≤ Mfc(e) ∀i ∈ [k], ∀c ∈ C, ∀p ∈ P, ∀e ∈ Ec

Wmax(c) ≥
∑

p∈P
W (p)lic,p(e) ∀i ∈ [k], ∀c ∈ C, ∀e ∈ Ec

Vmax(c) ≥
∑

p∈P
V (p)lic,p(e) ∀i ∈ [k], ∀c ∈ C, ∀e ∈ Ec

si
wt,p +

∑

c∈C,e∈E+
c (wt)\ιic

lic,p(e) = si
wt+1,p +

∑

c∈C,e∈E−
c (wt)

lic,p(e) ∀i ∈ [k], ∀t ∈ T , ∀p ∈ P, ∀w ∈ W

∑

p∈P,t∈T ,w∈W

e′∈E−
c (wt):e⊂e′

lic,p(e
′) ≤ M · (1 − fc(e)) ∀i ∈ [k], ∀c ∈ C, ∀e ∈ ιi

c

0 ≤ gi
w ≤ si

wT+1,p/D(w, p) ∀i ∈ [k], ∀w ∈ W, ∀p ∈ P : D(w, p) > 0

lic,p(e) ≥ 0 ∀i ∈ [k], ∀c ∈ C, ∀p ∈ P, ∀e ∈ Ec

si
wt,p ≥ 0 ∀i ∈ [k], ∀t ∈ T ∪ {T + 1},

∀p ∈ P, ∀w ∈ W

gi
w ≤ U(w) ∀i ∈ [k], ∀w ∈ W.

Note that in this MILP, for each i ∈ [k], we have a different load flow lic,p(e).
To simulate the truncated logistics plans, any potentially positive load on an
interdicted edge is omitted as an incoming load from the conservation constraints
in the following node. Moreover, we need to make sure that if a connector of a
particular logistics plan gets destroyed, its load stays zero for all future time
steps, especially if its path is scheduled to cross a warehouse. This is achieved
by the second, load-cancelling big-M constraint. Here, by e ⊂ e′ we denote for
edges e �= e′ ∈ Ec that e′ is reachable in the layered graph from e.

Proposition 2. Let Λ̃ ⊆ Λ be of size k (possibly smaller than |Λ|) and x̃b be a
distribution with support Λ̃. Finding Red’s best response against x̃b in a contested
logistics problem with Leontief utilities is NP-hard in terms of |G|, b, and k.

Proof. We reduce the set cover problem with the universe U = {u1, u2, . . . , un},
a collection of sets S = {S1, S2, . . . , Sm}, and an integer b to a CL scenario.
This scenario features a single package type with unit weight and volume, and
a single connector with weight and volume limits of 1. The connector moves
across a graph with four layers: the first and last contain only nodes s and t,
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Fig. 3. The physical graph described in Proposition 2, serving as a game for the set
cover problem we aim to reduce from. The second and third layers are identical, con-
taining a node for each set Si. Every ui corresponds to a path going through the edges
Sj , S

′
j of all the sets Sj the ui is contained in. Red can interdict only the forward edges

between the second and third layer (depicted in red color), encoding a selection of sets
in the cover. (Color figure online)

respectively. The second and third layers are identical, each with one node per
set Sj . Node s connects to each Si in the second layer. The second and third
layers are connected by edges between corresponding nodes Sj and S′

j . Each S′
j

in the third layer connects to every Si in the second layer and to t. Node t has a
loop to itself. The connector starts at s, each edge takes one time step to cross,
and the time horizon is 2n + 1. There are warehouses at nodes s and t, with a
supply of 1 at s and a demand of 1 at t, each with a payoff and maximum of 1.
Red has a budget of b and can interdict only the edges between the second and
third layers, each costing 1. Blue’s mixed strategy is constructed as follows: for
each ui, create Ti = {Sj | ui ∈ Sj}, take an arbitrary enumeration (t1, . . . , tk) of
Ti, and define a path Pi = (s, t1, t′1, . . . , tk, t′k, t, . . . , t) with 2n − 2|Ti| + 1 loops
in t at the end, each played with equal probability. Every ui hence corresponds
to a path going through all the sets ui is contained in, terminated by loops in t.
Note that the order in which the sets in Ti are traversed in Pi does not matter.
The BR value is 0 if and only if there is a set cover of size at most b.

→ If the value is 0, then there exists a best response strategy that interdicts all
n paths. From the construction, the size of this interdiction plan is at most b,
and the selected edges encode a selection of at most b sets from S. Because
every path corresponds to one ui, the selected sets form a set cover.

← is analogous.

In practice, we optimize Red’s utility using the feasibility formulation (Y).
Assume Blue plays the logistic plans λ1, . . . , λk with probabilities x1

b , . . . , x
k
b .

The optimal Red’s interdicting plan ι, encoded via binary indicators y, can be
formulated as the following simple min-max MILP, with the flow constraints (R)
for each logistics plan in the support:
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min
y∈Y

max
s,l,g

∑

i∈[k]

∑

w∈W

P (w)xi
bg

i
w−

∑

i∈[k]

∑

c∈C

∑

ei
c,j∈λi

c

∑

ei
c,k∈λi

c

k≥j

∑

p∈P
Zy(E(ei

c,j))l
i
c,p(e

i
c,k)

R(λi) ∀i ∈ [k]

0 ≤ gi
w ≤ si

wT+1,p/D(w, p) ∀i ∈ [k], ∀w ∈ W, ∀p ∈ P : D(w, p) > 0

gi
w ≤ U(w) ∀i ∈ [k], ∀w ∈ W.

Note the penalty term in the objective that plays a similar role to the load
cancelling constraint in Blue’s BR. Using penalty terms is less numerically stable
than the big-M constraints. However, using the same approach as in the BlueBR
would result in bilinear terms in the constraints, that are more cumbersome to
linearize, and involve unbounded big-M constants. The constant Z is chosen
to make any potential increase in the Leontief utility that Blue might gain by
sending a positive load over an interdicted edge undesirable due to the incurred
penalty, e.g., Z = maxw∈W P (w). Since the inner problem is an LP, we can
dualize it, which removes the bilinear terms in the objective and gives us the
final RedBR integer formulation. Due to space constraints, we have deferred
the specific details of this dualization to the extended version of the paper.

4.2 Approximating NE Using Strategy Generation

Despite the exponential size of Blue’s strategy space, practical CL scenarios
often exhibit equilibria with relatively small supports. This observation leads us
to employ the double oracle (DO) framework.

The DO algorithm (Algorithm 1) is an iterative, specialized form of concur-
rent column and row generation. It is frequently used to address large saddle-
point problems that have efficient (in practical terms) best-response oracles. The
DO algorithm incrementally constructs a subgame – a subset of pure strategies
for each player – with the intention of excluding strategies that do not contribute
to the equilibrium. At the conclusion of the algorithm, the subgame (ideally a
small portion of the entire game) contains a NE that mirrors the NE of the
original game. In our context, pure strategies consist of logistic and interdiction
plans, and subgames are defined by subsets Λ̃ ⊆ Λ and Ĩ ⊆ I.

The process begins with a small subgame for each player, Λ̃ and Ĩ. In each iter-
ation, it calculates the equilibrium (x̃∗

b , x̃
∗
r) within the current subgame, allow-

ing players to choose distributions of plans only from Λ̃ or Ĩ. For each player
i, we determine the best responses λBR and ιBR against their opponent’s sub-
game equilibrium strategy x̃∗

−i, using best-response oracles. These best responses
introduce new plans into the subgame, and the process repeats.

The DO algorithm terminates when the best-response oracles produce
responses that do not enhance any of the player’s utility over the subgame value.
This indicates that the current subgame equilibrium is also an equilibrium in the
full game, and adding more strategies will not yield less exploitable strategies
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Algorithm 1. Double Oracle for Contested Logistics Games
1: Λ̃, Ĩ ← InitialSubgame(Λ, I)
2: repeat
3: x̃∗

b , x̃∗
r ← NashEquilibrium(Λ̃, Ĩ)

4: λBR, ιBR ← BlueBR(x̃∗
r),RedBR(x̃∗

b)

5: Λ̃, Ĩ ← Λ̃ ∪ {λBR}, Ĩ ∪ {ιBR}
6: until EquilibriumGap(x̃∗

b , x̃∗
r , λBR, ιBR) ≤ ε

for either player. In practice, instead of converging to an exact equilibrium, we
calculate the equilibrium gap ∇ = u(x̃∗

b , ι
BR) − u(λBR, x̃∗

r) and terminate when
∇ ≤ ε for a predetermined threshold ε > 0, returning a 2ε-approximate-NE.

In practice, the time needed to determine Blue’s best response significantly
affects the overall runtime. To accelerate the computation, we set a predeter-
mined time limit for solving the MILP, rather than solving it to full completion.
This approach yields an approximate best response that is generally close to the
optimal solution. Periodically, and before the final termination, we solve Blue’s
BR MILP to completion to ensure the equilibrium gap is computed accurately.

5 Empirical Evaluation

Now we move to the experiments on contested logistics scenarios. Our goals are
(i) to explore qualitatively how optimal strategies behave in real-world scenarios,
and (ii) to evaluate the scalability of our proposed double oracle algorithm using
synthetically generated maps.

All experiments were conducted on an Intel Xeon Gold 6226 (2.9Ghz),
restricted to 8 threads and equipped with 32GB of RAM. The (MI)LPs were
solved with the Gurobi Optimizer version 10.0.3, build v10.0.3rc0 [21], on a
Linux 64-bit platform. The double oracle algorithm was implemented in Python
3.7.9, using a tolerance setting of ε = 10−2, and 5 s time limit for the MILP
solver.

Fig. 4. Computation times of the double oracle algorithm for grid world contested
logistics scenarios with uniform edge interdiction costs.
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Fig. 5. Computation times of the double oracle algorithm for grid world contested
logistics scenarios with randomly assigned edge interdiction costs.

5.1 Quantitative Evaluation on a Synthetic Grid World

First, we evaluate the performance of the DO on simple grid world scenarios. In
these scenarios, the physical graph consists of an N ×N grid. Blue designates all
four corners as warehouses, with an additional warehouse located at the center
of the grid. For even values of N , the central warehouse is one of the four central
nodes. Additionally, Blue has two trucks, initially positioned at opposing corners.
These trucks have sufficient weight and volume limits to transport any available
packages, and they can move along any single edge per time step. There are two
types of packages, A and B, each with unit weights and volumes. The warehouse
at the initial location (0, 0) of the first truck holds 4 units of A and 1 unit of
B. The warehouse at the location (N − 1, N − 1) of the other truck holds 1
unit of A and 3 units of B. The central warehouse supplies a single unit of each
package. Only two warehouses have positive demands, located in the remaining
two corners without the trucks. Both warehouses require 3A units and 2 B units.

To generate random grid world scenarios, each edge is removed with a prob-
ability of 0.1. Each warehouse with a demand is assigned a uniformly random
real payoff from the interval [1, 2]. Unless the edges have a uniform cost, the cost
is selected uniformly from the integer interval [1, 5]. For statistical robustness,
20 instances of each game were constructed and solved, with average results
reported alongside standard errors. Examples of the initial setup can be seen in
the two physical graphs in Fig. 6. In these maps, the starting locations of the two
trucks are shown as blue nodes, while the demand nodes are orange. The central
warehouse is purple, and each edge is annotated with its interdiction cost.

Figure 4 shows the average runtimes for the DO to solve grid scenarios of sizes
5 × 5, 6 × 6, and 7 × 7, each with uniform edge interdiction costs of 1. Solving
the game for Red’s budget of 1 (denoted as rb = 1) is clearly the easiest, with
higher budgets presenting similar levels of difficulty. Notably, the game becomes
trivial for a budget of 4, when the trucks can be completely cut off from reaching
the demand nodes. In Fig. 5, where interdiction costs are random, the difference
between budget 1 and higher budgets becomes even more pronounced.

To illustrate how the game value changes with Blue’s horizon and Red’s
capabilities, we selected two typical scenarios and depicted the generated phys-
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ical graphs, along with the resulting values as heatmaps, in Fig. 6. In the first
map, Red is able to completely cut off the connectors with a budget of 4, resulting
in a game value of zero for Blue. In contrast, Red can more efficiently interdict
Blue only if they possess a higher budget, and Blue’s shorter horizon does not
provide enough additional maneuverability to make a difference.

Fig. 6. The physical graphs for two random grid world contested logistics scenarios,
and game values as functions of red’s budget and blue’s horizon. Each grid world has
size 5×5. Their corresponding game value heat maps (on the right) have Red’s budget
on the horizontal axis and time horizon on the vertical axis. Lighter color signifies
higher game value. (Color figure online)

5.2 Qualitative Evaluation on Real-World Maps

We also conducted experiments on 2 different maps around the world simulating
CL scenarios. These are from (i) the United Kingdom (UK) based on railroads
during World War 2, and (ii) Mariupol, a city heavily involved in the ongoing
Russo-Ukrainian conflict. The goal of these experiments is not to evaluate the
efficiency of our DO method, but rather to showcase (a) how real-world red and
blue strategies will look like in practice, (b) the importance of strategic behavior
(i.e., randomization) in both Red and Blue, and (c) the relatively low cost that
blue pays to be robust to adversarial behavior, and conversely the extremely poor
performance when ignoring existence of Red or when using heuristic solutions.

Contested Logistics in the United Kingdom. This scenario is based on the
southern region of the United Kingdom. The region is broken into provinces,
using data from the World War 2 based video game Heart of Iron IV [42].
There are three essentially identical packages: boots, rifles and helmets; each
soldier requires 1 unit of each to be equipped (note that we allow for “fractional
soldiers”). There are 4 connectors, comprising 2 trains and 2 trucks. Trucks can
move between any two adjacent provinces and have a capacity of 5. Trains can
only move between provinces connected by railroads, but enjoy a capacity of
20 (for this scenario, weight and size are identical quantities). There are two
demand and supply nodes. Each supply node contains 20 of each package. There
is unlimited demand for soldiers at each demand node. Red is able to interdict
edges between any two adjacent provinces (recall that these are directed edges)
and has a budget of 2. We set a time horizon of 10 for Blue. The equilibrium
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Fig. 7. NE for Blue in the UK scenario. Each row corresponds to a logistics plan played
with positive probabilities 4/9, 1/9, 5/21, 13/63 respectively. Light gray lines demarcate
boundaries between provinces, numbers denote province labels: for simplicity we have
only included those encountered by some connector logistics plan. Each column shows
the movement of a single connector, in the order of Truck 1, Truck 2, Train 1, Train
2, which start at provinces 4, 5, 7, and 1 respectively. Connector paths are denoted by
the solid black line. Red crosses at 7 and 12 denote supply nodes, green crosses at 3
and 4 denote demand. Dotted lines denote railroads. (Color figure online)

strategies for Blue and Red are shown in Figs. 7 and 8, which has a Nash value
of 9.259. We discuss the most interesting aspects of the NE.

– In all 4 logistics plans, Train 2 behaves essentially deterministically—first,
collect supply from 12, then deliver it to the demand at 4. Therefore, Red
may interdict anywhere along this path (e.g., edge 16 → 12) and interdict
Train 2 with certainty. Surprisingly, we find that in interdiction plan 3, Red
declines this “freebie”, choosing instead to interdict edges 7 → 6 and 7 → 5.

– Second, we observe that Train 1 coordinates with Trucks in a way such as
to maximize “throughput”. In logistics plan 3 and 4, we observe that Train
1 (which begins at a supply node 7) delivers directly to the demand node
at 4 by moving along the left path comprising 7 → 6 → 2 and backward.
Note that compared to Train 2, the distances between supply and demand
is much shorter, so the throughput here is comparatively much higher. Blue
also diversifies via logistics plan 1, where Train 1 moves to the right along
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Fig. 8. NE for Red in the UK scenario. Each subfigure corresponds to a single interdic-
tion plan played with probabilities 7/18, 1/9, 7/18, 1/9 respectively. Dotted lines denote
railroads and thick red lines edges that are interdicted. (Color figure online)

7 → 5 → 0 instead. It then drops off supplies along the way at province 0,
while allowing Trucks 1 and 2 to complete the “last mile delivery” to province
4. This hedges against Red always interdicting the left path 7 → 6 → 2. This
explain interdiction plan 3: by interdicting 7 → 6 and 6 → 4, Red completely
shuts down the joint operation between Train 1 and the Trucks.

– We again observe hedging behavior in Logistics plan 2. Train 1 first takes the
right path 7 → 5 → 0 → 8, drops off its packages (leaving last mile deliveries
to Trucks), returns to 7 to pick up fresh supplies, and finally takes the left
path 7 → 6 → 4 to satisfy the demand at 4. Interestingly, this exposes Train
1 to interdictions both on the left and right. However, if interdiction is on
the left (e.g., 7 → 6 via interdiction plan 2), then at least the first batch of
supplies would reach demand node 3.

– We point out that because supply and demand nodes are closer at the top of
the region, the “throughput”, i.e., demand satisfied per unit time is potentially
much higher. Because of this, interdicting Train 2 all the time is not neces-
sarily always a good idea, since Train 2 has to take a long trip to province 12
and finally 4 just for a single batch.

– Finally, we remark that Trucks may also operate independently of Train 1.
Indeed, if this was not the case, then one would expect Blue to be very brittle.
One example of this is seen in Logistics plan 1, Truck 1. Here, Truck 1 moves
from province 4 to 7, collects supplies, and transports packages to 3. However,
instead of moving directly from 7 to 3, by the path 7 → 5 → 8 → 3, it takes
an detour of 7 → 15 → 11 → 14 → 3. This avoids overlapping with Train 1’s
right path, which contains the segment 7 → 5.

Contested Logistics in Ukraine. This scenario was constructed based on
Ukraine’s attack on a key rail bridge connecting the occupied city of Mariupol
with Russia on January 7th, 2024. The destruction of this bridge not only dis-
rupts immediate logistical operations but also poses significant long-term chal-
lenges to Russia’s ability to sustain its military presence in southern Ukraine.
Our experiment simulated this scenario using realistic geographical data com-
bined with hypothetical logistics settings to assess the broader impact.

According to the news report [15], the cities this railway passes through
include Mariupol, Donetsk, Taganrog, and Rostov-on-Don, so we defined the
area of interest as a rectangle containing these cities. We constructed a realistic
map within this area using the Open Street Map (OSM) database, which provides
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global geographical data, including information on roads, railways, and airports.
We used the QGIS software to process the OSM data, extracting and visualizing
the nodes and edges to construct accurate transportation networks. The resulting
physical graph, with 17 nodes, is depicted on the right in Fig. 9.

Fig. 9. The physical graph for the Ukrainian scenario. The train edges are depicted
in blue, the truck edges in green, and the plane edges in red. On the left, the optimal
logistics plan for 5 time steps and no Red. (Color figure online)

Ukraine and Russia are designated as Red and Blue, respectively. Blue
employs three types of connectors: trains, trucks, and planes. To identify the
train-accessible edges, we extracted nodes marked as “train stations” in the OSM
data for the area of interest and selected 17 key stations. These included one
station each in Mariupol (node 1), Donetsk (node 8), Taganrog (node 6), and
Rostov-on-Don (node 17). These stations served as nodes in the train graph. The
truck graph used the same nodes, assuming trucks could travel between any train
stations. For the plane graph, we selected nodes tagged as “aerodrome” in the
OSM data, representing airports, heliports, and airfields. The plane graph had
fewer nodes due to the limited number of airports but included airports in the
four major cities. For illustration, each node in the plane graph was considered
the same as the closest node in the train and truck graphs, depicted as a single
node in Fig. 9. We then defined edges for the connector graphs. For the train
graph, we filtered railway paths in QGIS to connect the 17 stations, depicted
in blue in Fig. 9. For the truck graph, we selected roads tagged as primary, sec-
ondary, or tertiary under “highway” in QGIS and identified the shortest paths
connecting the 17 stations, depicted in green in Fig. 9. For the plane graph, we
assumed direct flights between airports, defining edges as direct lines between
them. We used QGIS to record the distance of each edge, essential for calculating
the time for a connector to traverse an edge given its speed.

In the experiments, Blue has one connector of each type: a Train, a Truck,
and a Plane, with each time step representing one hour. The Train starts at node
16, moving at 200 km/h, allowing it to traverse any edge in one time step. The
Truck starts at node 6, moving at 100 km/h, taking one time step to cross most
edges and two time steps for eight specific edges. The Plane also starts at node
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Fig. 10. NE for Blue in the Ukraine scenario. Each subfigure corresponds to a single
logistics plan played with probabilities 0.339, 0.337, 0.093, 0.076 and 0.062, respectively.
Train, Truck and Plane routes are depicted in blue, green and red. (Color figure online)

Fig. 11. NE for Red in the Ukraine scenario. Each subfigure corresponds to a single
interdiction plan played with probabilities 0.462, 0.144, 0.131, 0.131 and 0.131, respec-
tively. (Color figure online)

6, moving at 300 km/h, reaching all destinations in one time step. All connectors
have sufficient capacity for transferring available loads.

The railway-connected cities (nodes 1, 6, 8, 17) were considered warehouses.
With the conflict pushing from the southeast to the northwest, demand locations
were set in the northwest (nodes 1 and 8), and supply locations in the southeast
(nodes 6, 7, and 17). Additional supply nodes included 3, 13, and 16, strategically
chosen for their proximity to the Russian mainland. Supply nodes had packages
of types A and B, with unit weights and volumes. Major supply nodes 6 and 17
had 5 units each of A and B, while nodes 3 and 7 had 3 units of A and 1 of B,
node 13 had 2 units of both A and B, and node 16 had 3 units of both. The
demand was 11 units of A and 13 units of B at node 1, and 14 units of A and 11
units of B at node 8. The payoff per unit was 1.3 at node 1 and 1.1 at node 8.

Consider Blue’s optimal logistics plan for a 5-step horizon, assuming no pres-
ence of Red, as shown on the right side of Fig. 9. The Train’s route is marked in
blue, the Truck’s in green, and the Plane’s in red. The Plane delivers supplies
to node 12, which the Train then transports to node 8. Meanwhile, the Truck
collects packages from eastern warehouses and brings them to node 17, where
they are loaded onto the Plane and flown to node 1. The value of this plan is
1.5956, but it is highly exploitable. Red can easily reduce the payoff to 0 by
interdicting any two critical edges and cutting off deliveries to nodes 1 and 8.

To address this vulnerability, the equilibrium of the corresponding CL game,
where Red can interdict any two edges, introduces randomization. Figure 10
depicts Blue’s mixed strategy, showing the probabilities of playing each of the
five logistics plans. The paths are more randomized, and even the connectors
responsible for final deliveries to demand nodes may change. For example, the
Truck only follows its original route from the no-Red scenario in the least fre-
quently played plan. More often, it delivers supplies directly to nodes 8 or 1. Sim-
ilarly, Fig. 11 shows Red’s randomized interdiction strategy. As expected, Red



Contested Logistics: A Game-Theoretic Approach 143

consistently targets the Train, which is vulnerable due to movement constraints,
and frequently interdicts the route between the region’s key cities, which serve as
major transport hubs. In other cases, Red attempts to intercept the Plane. The
value of this equilibrium is 1.0401, about 65% of the optimal no-Red logistics
value, but it is significantly more robust against adversarial actions.

Table 1. The performance of the computed Blue’s randomized logistics plans against
less or more capable Red in (left) the UK scenario and (right) the Ukraine scenario.
Rows correspond to the expected budget used during the computation. Columns indi-
cate the true Red’s budget.

Exp.\True0 1 2

0 31.78.33 0.0
1 25.8 16.76.67
2 23.3 15.9 9.26

Exp.\True0 1 2 3

0 1.600.40 0.0 0.0
1 1.60 1.200.78 0.38
2 1.44 1.12 1.040.64
3 1.32 1.10 0.99 0.89

Price of Robustness. It is natural to ask: what if Blue does not know Red’s
budget? What happens if Blue assumes Red has a high interdiction budget when,
in fact, it has none, or vice versa? This leads to a discussion about the Price of
Robustness, which refers to the amount Blue sacrifices to be robust against Red.
We present our findings in Table 1 for both the UK and Mariupol scenarios.
It is evident in both cases that underestimating Red’s capabilities results in a
significant drop in utility. For example, when Blue devises a logistics plan without
considering Red (i.e., the first row of each table), its utility drops to zero with
just a Red budget of 2. Conversely, adopting a more conservative logistics plan
(i.e., assuming Red has a higher budget) leads to a relatively smaller drop in
utility. For instance, in the UK scenario, the Price of Robustness is just 31.7-
23.3, which is approximately one-quarter of the expected utility. A similar trend
is observed in the Ukraine scenario.

Comparisons Against a Non-Game-Theoretic Alternative. We now com-
pare our game-theoretic approach to a simple heuristic that does not explicitly
account for Red. Consider the min-overlap heuristic, which involves two hyper-
parameters: k, the minimum target payoff, and # str, the number of logistics
plans played with positive probability. The min-overlap heuristic identifies # str
logistics plans, each required to achieve a utility of k under the assumption that
Red does not exist, while minimizing the maximum overlap across edges. Here,
overlap on a given physical edge is the total number of connectors using that
edge, summed across all # str logistics plans. Blue then randomizes uniformly
over these # str logistics plans. The rationale is that by minimizing overlap
among “good” logistics plans, no single edge will be excessively used by con-
nectors across the logistics plans. We tested this min-overlap heuristic strategy
against a best-responding Red and found that it performs poorly, as shown in



144 J. Černý et al.

Table 2. For instance, in the UK scenario, none of the instances achieve more
than half of the true Nash value (9.259). In the Ukraine scenario, the best-
performing instance reached only 69% of the Nash value. This suggests that
seemingly reasonable heuristics may actually perform poorly in practice, and
that counter-intuitive logistics plans may be necessary for optimal performance.

Table 2. Exploitability of the min-overlap heuristic strategies in (left) the UK scenario
and (right) the Ukraine scenario.

k \ # str3 4 5 6 7

10 1.111.671.331.941.67
20 3.892.923.332.504.29
30 2.223.332.332.223.10

k \ # str5 10 15 20 25

1.2 0.7200.4100.6270.7300.641
1.3 0.5170.4960.5700.6760.577
1.4 0.4390.5880.5530.5840.648
1.5 0.5170.4960.3440.5760.637

6 Conclusion

In this paper, we introduced Contested Logistics games, a complex logistics prob-
lem that incorporates adversarial disruptions. Our model, formulated as a large
two-player zero-sum one-shot game on a graph, identifies optimal logistics plans
via a (randomized) Nash equilibrium. We demonstrated the computational com-
plexity of finding these equilibria and proposed a practical double-oracle solver
using best-response mixed-integer linear programs. Our experiments, conducted
on both synthetic and real-world maps, confirm the scalability of our method
for reasonably large games. Additionally, our ablation studies underscore the
critical importance of explicitly modeling adversarial capabilities, rather than
relying solely on heuristic-based logistics plans.

Acknowledgments. This research was supported by the Office of Naval Research
award N00014-23-1-2374. Christian Kroer was additionally supported by the Office of
Naval Research award N00014-22-1-2530, and the National Science Foundation awards
IIS-2147361 and IIS-2238960.

References

1. Agra, A., Christiansen, M., Figueiredo, R., Hvattum, L.M., Poss, M., Requejo, C.:
The robust vehicle routing problem with time windows. Comput. Oper. Res. 40(3),
856–866 (2013)

2. Alotaibi, K.A., Rosenberger, J.M., Mattingly, S.P., Punugu, R.K., Visoldilokpun,
S.: Unmanned aerial vehicle routing in the presence of threats. Comput. Industr.
Eng. 115, 190–205 (2018)

3. An, B., Tambe, M., Sinha, A.: Stackelberg security games (SSG) basics and appli-
cation overview. Improving Homeland Secur. Decis. 2, 485 (2017)



Contested Logistics: A Game-Theoretic Approach 145

4. Ausseil, R., Gedik, R., Bednar, A., Cowan, M.: Identifying sufficient deception in
military logistics. Expert Syst. Appl. 141, 112974 (2020)

5. Barahona, F., et al.: Inventory allocation and transportation scheduling for logistics
of network-centric military operations. IBM J. Res. Dev. 51(3.4), 391–407 (2007)

6. Bell, J.E., Griffis, S.E.: Military applications of location analysis. Appl. Location
Anal. 403–433 (2015)

7. Bertsimas, D., Nasrabadi, E., Orlin, J.B.: On the power of randomization in net-
work interdiction. Oper. Res. Lett. 44(1), 114–120 (2016)

8. Bidgoli, M.M., Kheirkhah, A.: An arc interdiction vehicle routing problem with
information asymmetry. Comput. Industr. Eng. 115, 520–531 (2018)

9. Blom, M., Shekh, S., Gossink, D., Miller, T., Pearce, A.R.: Inventory routing for
defense: moving supplies in adversarial and partially observable environments. J.
Defense Model. Simul. 17(1), 55–81 (2020)

10. Bowling, M., Burch, N., Johanson, M., Tammelin, O.: Heads-up limit hold’em
poker is solved. Science 347(6218), 145–149 (2015)

11. Brown, N., Sandholm, T.: Superhuman AI for heads-up no-limit poker: Libratus
beats top professionals. Science 359(6374), 418–424 (2018)

12. Brown, N., Sandholm, T.: Superhuman AI for multiplayer poker. Science
365(6456), 885–890 (2019)

13. Church, R.L., Scaparra, M.P., Middleton, R.S.: Identifying critical infrastructure:
the median and covering facility interdiction problems. Ann. Assoc. Am. Geogr.
94(3), 491–502 (2004)

14. Conitzer, V., Sandholm, T.: Computing the optimal strategy to commit to. In:
Proceedings of the 7th ACM Conference on Electronic Commerce, pp. 82–90 (2006)

15. Cook, E.: Ukraine destroys key rail bridge connecting occupied Mariupol to Rus-
sia (2024). https://www.newsweek.com/ukraine-bridge-russia-logistics-mariupol-
donetsk-crimea-1858516. Accessed 19 June 2024

16. Cowen, D.: A geography of logistics: market authority and the security of supply
chains. Ann. Assoc. Am. Geogr. 100(3), 600–620 (2010)

17. Daganzo, C.: Logistics Systems Analysis. Springer, Heidelberg (2005). https://doi.
org/10.1007/3-540-27516-9

18. Erkut, E., Verter, V.: Modeling of transport risk for hazardous materials. Oper.
Res. 46(5), 625–642 (1998)

19. Fang, F., Stone, P., Tambe, M.: When security games go green: designing defender
strategies to prevent poaching and illegal fishing. In: IJCAI, pp. 2589–2595 (2015)

20. Ghiani, G., Laporte, G., Musmanno, R.: Introduction to Logistics Systems Plan-
ning and Control. Wiley, Hoboken (2004)

21. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023). https://
www.gurobi.com

22. Hill, R., Pohl, E.: An overview of meta-heuristics and their use in military modeling.
Handb. Milit. Industr. Eng. (2009)

23. Jain, M., An, B., Tambe, M.: Security games applied to real-world: research con-
tributions and challenges. In: Jajodia, S., Ghosh, A., Subrahmanian, V., Swarup,
V., Wang, C., Wang, X. (eds.) Moving Target Defense II. Advances in Information
Security, vol. 100, pp. 15–39. Springer, New York (2013)

24. Jaiswal, N.K.: Military Operations Research: Quantitative Decision Making, vol.
5. Springer, Heidelberg (2012)

25. Kiekintveld, C., Jain, M., Tsai, J., Pita, J., Ordónez, F., Tambe, M.: Computing
optimal randomized resource allocations for massive security games (2009)

https://www.newsweek.com/ukraine-bridge-russia-logistics-mariupol-donetsk-crimea-1858516
https://www.newsweek.com/ukraine-bridge-russia-logistics-mariupol-donetsk-crimea-1858516
https://doi.org/10.1007/3-540-27516-9
https://doi.org/10.1007/3-540-27516-9
https://www.gurobi.com
https://www.gurobi.com


146 J. Černý et al.

26. Korzhyk, D., Conitzer, V., Parr, R.: Complexity of computing optimal Stackel-
berg strategies in security resource allocation games. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 24, pp. 805–810 (2010)

27. Lee, C., Lee, K., Park, S.: Robust vehicle routing problem with deadlines and travel
time/demand uncertainty. J. Oper. Res. Soc. 63(9), 1294–1306 (2012)

28. Lee, J.M.Y., Wong, E.Y.C.: Suez canal blockage: an analysis of legal impact, risks
and liabilities to the global supply chain. In: MATEC Web of Conferences, vol. 339,
p. 01019. EDP Sciences (2021)

29. List, G.F., Mirchandani, P.B., Turnquist, M.A., Zografos, K.G.: Modeling and
analysis for hazardous materials transportation: risk analysis, routing/scheduling
and facility location. Transp. Sci. 25(2), 100–114 (1991)

30. McMahon, C.J.: Maritime trade warfare: a strategy for the twenty-first century?
Naval War Coll. Rev. 70(3), 14–38 (2017)

31. v. Neumann, J.: Zur theorie der gesellschaftsspiele. Math. Annalen 100(1), 295–320
(1928)

32. Ordóñez, F.: Robust vehicle routing. In: Risk and Optimization in an Uncertain
World, pp. 153–178. INFORMS (2010)

33. Pfohl, H.C.: Logistics systems. The faculty of ILiM, Poznań (1998)
34. Pita, J., et al.: Armor security for Los Angeles international airport. In: AAAI, pp.

1884–1885 (2008)
35. Sadati, M.E.H., Aksen, D., Aras, N.: The r-interdiction selective multi-depot vehi-

cle routing problem. Int. Trans. Oper. Res. 27(2), 835–866 (2020)
36. Salani, M., Duyckaerts, G., Swartz, P.G.: Ambush avoidance in vehicle routing for

valuable delivery. J. Transp. Secur. 3, 41–55 (2010)
37. Salmeron, J., Wood, R.K., Morton, D.P.: A stochastic program for optimizing

military sealift subject to attack. Milit. Oper. Res. 19–39 (2009)
38. Shieh, E., et al.: Protect: a deployed game theoretic system to protect the ports

of the united states. In: Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems, vol. 1, pp. 13–20 (2012)

39. Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations. Cambridge University Press, Cambridge
(2008)

40. Smith, J.C., Lim, C.: Algorithms for network interdiction and fortification games.
In: Chinchuluun, A., Pardalos, P.M., Migdalas, A., Pitsoulis, L. (eds.) Pareto Opti-
mality, Game Theory And Equilibria. Springer Optimization and Its Applications,
vol. 17, pp. 609–644. Springer, New York (2008). https://doi.org/10.1007/978-0-
387-77247-9_24

41. Smith, J.C., Song, Y.: A survey of network interdiction models and algorithms.
Eur. J. Oper. Res. 283(3), 797–811 (2020)

42. Studio, P.D.: Hearts of iron IV (2016). https://www.paradoxinteractive.com/
games/hearts-of-iron-iv/about

43. Sungur, I., Ordónez, F., Dessouky, M.: A robust optimization approach for the
capacitated vehicle routing problem with demand uncertainty. IIE Trans. 40(5),
509–523 (2008)

44. Washburn, A., Wood, K.: Two-person zero-sum games for network interdiction.
Oper. Res. 43(2), 243–251 (1995)

45. Wollmer, R.: Removing arcs from a network. Oper. Res. 12(6), 934–940 (1964)
46. Xu, H.: The mysteries of security games: equilibrium computation becomes com-

binatorial algorithm design. In: Proceedings of the 2016 ACM Conference on Eco-
nomics and Computation, pp. 497–514 (2016)

https://doi.org/10.1007/978-0-387-77247-9_24
https://doi.org/10.1007/978-0-387-77247-9_24
https://www.paradoxinteractive.com/games/hearts-of-iron-iv/about
https://www.paradoxinteractive.com/games/hearts-of-iron-iv/about


Cyber Deception



On Countering Ransomware Attacks Using
Strategic Deception

Roshan Lal Neupane1(B) , Bishnu Bhusal1 , Kiran Neupane1 ,
Preyea Regmi1, Tam Dinh1, Lilliana Marrero1, Sayed M. Saghaian N. E.1,

Venkata Sriram Siddhardh Nadendla2 , and Prasad Calyam1

1 University of Missouri, Columbia, MO 65211, USA
{neupaner,bhusalb,kngbq,prrgfb,tdbhr,lmmbd8,ssddd,calyamp}@missouri.edu

2 Missouri University of Science and Technology, Rolla, MO 65409, USA
nadendla@mst.edu

Abstract. Ransomware attacks continue to be a major concern for crit-
ical systems that are vital for society e.g., healthcare, finance, and trans-
portation. Traditional cyber defense mechanisms fail to pose dynamic
measures to stop ransomware attacks from progressing through various
stages in the attack process. To this end, intelligent cyber deception
strategies can be effective when they leverage information about attacker
strategies and deploy deceptive assets to increase the cost or complexity
of a successful exploit or discourage continued attacker efforts. In this
paper, we present a novel game theoretic approach that uses deception-
based defense strategies at each of the ransomware attack stages for opti-
mization of the decision-making to outsmart attacker advances. Specif-
ically, we propose a multistage ransomware game model that deploys
a combination of deception assets i.e., honeytokens, honeypots, honey-
files, and network honeypots in subgames. Using closed-form backward
induction, we evaluated Subgame-Perfect Nash Equilibrium (SPNE). We
perform a numerical analysis using real-world data and statistics pertain-
ing to the impact of ransomware attacks in the healthcare sector. Our
healthcare case study evaluation results show that the use of deception
technologies is favorable to the defender. This work elucidates the pro-
found implications of strategic deception in cybersecurity, demonstrating
its capacity to complicate successful exploits and consequently bolster
the defense of key societal infrastructures.

Keywords: ransomware · cyber deception · game theory ·
attacker/defender game

1 Introduction

Deception plays a crucial role in the ever-evolving landscape of ransomware
attacks. Deception techniques, such as honey tokens, honeypots, honey files,
and network honeypots, are vital tools in combating those attacks [29] so that
defenders can gain a competitive edge in the intricate game of ransomware,
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disrupting the attackers’ strategies and turning the tables in favor of cyberse-
curity resilience. This paper presents a novel approach to ransomware defense
via modeling the attacker-defender interaction as a multi-stage game and inves-
tigates effective techniques to deceive the ransomware attacker at each stage of
the attack using tools such as honeytokens, honeypots, honeyfiles, and network
honeypots.

Ransomware is a malware type that encrypts target users’ data, rendering it
inaccessible without a decryption key that the attacker exclusively holds. Typ-
ically, victims are directed to pay a ransom to decrypt their data [37]. The
Internet Crime Report published by the FBI lists 2385 registered complaints for
Ransomware attacks in the year 2022 [3] alone, which has led to economic losses
that totalled to more than $34.3 million. These attacks have impacted diverse
application domains ranging from healthcare (e.g. emergency departments in
San Diego County’s healthcare delivery organizations [15]), critical infrastruc-
ture (e.g. Colonial Pipeline attack [30]), transportation (e.g. ransomware attacks
on Toyota and Kojima), government facilities (e.g. ransomware attacks on the
City of Detroit and Washington DC police department), IT (e.g. Acer), and
finance (e.g. supply chain attack [13] and Travelex).

To make things worse, ransomware is also offered as a service by some mali-
cious organizations. One such example is REvil [19] (which stands for Ran-
somware Evil), which is a ransomware-as-a-service (RaaS) platform that has
been run by organized criminal groups in Russia. Given the widespread impact
of ransomware attacks on diverse application domains, there is an urgent need to
investigate advanced defense and impact mitigation techniques to counter these
attacks.

In the past, ransomware has been studied as a multi-stage game [42] to thor-
oughly model the diverse interactions between the attacker and the defender
in time. While a detailed account of the past literature on game-theoretic
approaches to counter ransomware attacks is presented in Sect. 2.1, there is little
work on the design of strategic deception to counter ransomware attacks to the
best of our knowledge. Therefore, this paper is the first of its kind to investi-
gate the effectiveness of deception techniques (e.g. honeypots, honeytokens and
honeyfiles) against ransomware attacks using multi-stage games. The optimal
strategy at each of the stages are computed using backward induction [11] via
breaking the game into smaller and manageable sub-games. Such an approach
leads to the identification of subgame perfect equilibria where optimal strategies
are met in each subgame.

The main contributions of this paper are three-fold. Firstly, the proposed
multi-stage game is comprehensive and considers most stages of real-world ran-
somware attacks (e.g. infection, installation and encryption) and their corre-
sponding defenders’ deception assets (e.g. honeytokens, honeypots and honey-
files) in real-world adversarial environments. In addition, the model also encom-
passes sub-stages for ransom payment and arrest, aiming to capture attackers
and limit defender losses. Secondly, the best-response strategies for both the
attacker and the defender are formally evaluated except for the root node. At
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the root node, the best-response search reduces to a binary quadratic program,
which is solved using state-of-the-art integer-programming methods. Thirdly,
the SPNE is algorithmically evaluated in numerical experiments, and results are
discussed in comparison with state-of-the-art literature.

The remainder of this paper is organized as follows: Sect. 2 presents back-
ground of related works and cyber deception techniques. Section 3 models the
interaction between a ransomware attacker and a defender. Section 4 presents
an equilibrium analysis. Section 5 makes a case for healthcare industry. Section 6
details the numerical results, comparison, and their analysis. Section 7 concludes
the paper.

2 Background

In this section, we go over the related literature and background on the deception
techniques applicable in mitigating different stages in a ransomware attack.

2.1 Related Works

The related literature is presented briefly in three different themes and gaps are
identified in the state-of-the-art to defend against ransomware attacks.

Ransomware Detection and Defense. There have been many approaches
to the detection and defense of ransomware attacks. Kolodenker et al. in [20]
presented a prototype called Paybreak that is able to recover files by decrypting
them based on insights gained during the process of secure file encryption. A
data backup solution is used in [24], called AMOEBA which has high ransomware
detection accuracy with negligible performance overhead on the backup process.
Ransomwall [33] is a machine learning approach to defend against ransomware
attacks by learning suspicious ransomware behavior processes to initiate a data
backup for preserving user data. Patyal et al. in [28] proposed a multi-layer
architecture defense, with each layer employing different techniques starting from
improved policies for enhanced security, recursive folder creation for ransomware
detection, process monitoring, to data backup.

These methods target specific stages of a ransomware attack and fall short
of considering every stage the attack process for defense. Our novelty lies in
considering every stage of the process for the defense against the attack using a
game theoretic approach.

Game Theoretic Approaches for Ransomware. There are several forms
of game-theoretic models that are applied for the mitigation of ransomware
attacks. Authors in [14] treat the problem by presenting finances as the pri-
mary motive of the attacker via the models developed by [32] and [21]. Authors
in [42] present a multi-stage game that comprehensively models ransomware
attack and defense with a fully observable environment set up. To combat ran-
somware in IoT, authors in [43] present a multi-stage game framework for cyber
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and economic phases of a ransomware attack. Similarly, there are several conse-
quences discussed in how the stages progress and how the outcome of the previous
stage sets the ground for the upcoming stage. Different tangents are discussed in
the articles such as [22,40] where the ransomware attacks are dealt in terms of
attacker-defender game, defender-insurer game where the strategies and ransom
amounts differ based on the strategy applied by each of the participant in the
game.

There are different approaches to defend against ransomware attacks using
game theory models showcased in the literature mentioned. Our novelty lies in
considering deception techniques as defender strategies within various stages of
a ransomware attack and defense process.

Deception-Based Defense Against Ransomware. Authors in [16] pose a
solution that uses deception to stop a crypto ransomware attack with minimal
spatial or system computation requirement. They deploy a honeyfile that recog-
nizes when an API function is called between software components using a hook
and a monitoring file that checks whether the honeyfile has been encrypted or
not. Another mitigation technique implemented is called R-Sentry [34] that aids
how to optimally place honeyfiles based on the file traversal patterns of ran-
somware variants. Some authors leverage a combination of these tools to come
up with a stronger deception-based defense that they claim as an auxiliary ran-
somware traceable system called RansomTracer [38]. Authors in [36] present a
stealthy approach to backing up data in order to isolate them from the attacker
no matter the level of privilege acquired by them attacker. RTrap in [17] is a
systematic strategy that utilizes machine learning to create deceptive files, luring
attackers or ransomware to access them upon detecting potential access.

As a multi-stage process that involves infection, installation, encryption, data
movement or deletion, etc., ransomware attacks need a more robust defense
system that considers every stage of the process. Our novelty lies in considering
deception for each of the attack stage processes with state-of-the-art deception
technologies that we discuss in the next section.

2.2 Cyber Deception Techniques

There are different deception techniques that can be used to deceive attackers
accomplished by deliberate placing or positioning of resources that look real and
of interest to the attackers. Similar attempts are made by ransomware attackers
as well. For safeguarding the system from ransomware attack, we leverage three
types of deception techniques. These are:

Honeytokens. Honeytokens are artifacts such as e.g., access tokens, credentials
that can be strategically placed in the organizational network (such as e.g., in
data stores, code base) for attackers to use [31]. There are various available
tools that can generate such honeytokens such as e.g., HoneyGen [12], Canary
Tokens [1], SpaceSiren [8]. These tokens are designed such that when they are
triggered, they can alert security teams or simply lead the attackers to deception
systems such as honeypots.
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Honeypots. Honeypots [35] are systems or software applications that are built
to monitor hacker activities, or interact with them depending on the level of
interactions (low, medium, or high) [25]. A high-interaction honeypot is able to
deploy real network services, applications, and operating systems. This can aid
in capturing extensive information. In the context of ransomware, attackers can
be deceived into infecting and installing malware into the decoy honeypot and
subsequently encrypting files that are of no use by containing them in a hon-
eypot. Some examples are: low-interaction (Glastopf [26]), medium-interaction
(Kippo [6]), and high-interaction (HIHAT [27]).

Network honeypots can be leveraged for performing protocol inspections to
monitor network traces. In the ransomware defense context, we use network
honeypots as a strategy to monitor exfiltration of data with the hopes of redi-
recting the exfiltration attempts to a controlled system and not to the attacker’s
intended system.

Honeyfiles. Honeyfiles [41], similar to other deception methods are artifacts
that can be used as baits to grab an attacker’s attention. In the context of the
paper, we can leverage honeyfiles portraying them as real files the ransomware
attackers might want to encrypt. Encrypting these files can lead to triggering
of alarm, or can simply be treated as a fail-safe for the encryption phase of the
ransomware attack cycle. To delay the detection of honeyfiles, there are advanced

Fig. 1. Attacker and defender interactions in the ransomware game model.
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methods such as in [23], where Generative Adversarial Networks (GANs) have
been shown to be useful to create effective deception against ransomware using
decoy/honeyfiles. RLocker [18] is an example honeyfile-based deception tool.

3 Ransomware Game Model

Consider an adversarial setting with two agents, a ransomware attacker and a
defender, and a system-of-interest with N subsystems containing valuable data.
Let Vi denote the value of data present in the ith subsystem. The attacker wishes
to lock one/more subsystems within a system-of-interest for certain ransom.
On the other hand, the defender’s goal is to safeguard the entire system from
the ransomware threat using three deception techniques, namely honeytokens,
honeypots and honeyfiles. This interaction between the attacker and the defender
occurs in multiple stages, as illustrated in Fig. 1, and discussed below. For the
sake of reader’s convenience, a table of notation is also included in Table 1.

Stage 1 - Data Backup and Deception: In this first stage, the defender
makes a binary decision bi whether or not to backup the data on the ith subsys-
tem upon system deployment. Without any loss of generality, let bi = 1 denote
the defender’s decision to backup data, in which case, the defender incurs a cost
B, accounting for cost of data back up and recovery. In other words, the ran-
somware attack is destined to fail if bi = 1. On the contrary, the attacker may
launch a successful ransomware attack if bi = 0. Furthermore, in an attempt
to protect the system, the defender has to choose whether or not to deploy a
three-pronged deception technique using honeytokens, honeypots, and honeyfiles,
to prevent the ransomware attacker from gaining access into the ith subsystem.
Let hi = 1 denote the binary decision to develop and deploy the aforementioned
three-pronged deception strategy, and hi = 0 denote otherwise. If hi = 1, assume
that the defender deploys nht honeytokens, one honeypot and nhf honeyfiles in
order to deceive the ransomware attacker. In other words, the defender’s decision
is a tuple

(
(b1, h1), · · · , (bi, hi), · · · , (bN , hN )

)
∈ {0, 1}2N . Without any loss of

generality, for each subsystem, let B be the cost of data backup, Cht denotes the
cost of deploying a single honeytoken, Chp is the cost of deploying the honeypot,
and Chf represents the cost of deploying a single honeyfile. For simplicity, we
denote the total cost of deception as

CH = nht · Cht + Chp + nhf · Chf . (1)

In addition to the three aforementioned deception strategies, assume that the
defender always deploys an additional network honeypot to deceive attackers
from data exfiltration [39].
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Table 1. Notations used in this paper

Notation Description

B Cost of data backup
Cht Cost of honeytokens deployment
nht Number of honeytokens deployed
Chp Cost of honeypot deployment
Chf Cost of honeyfiles deployment
nhf Number of honeyfiles deployed
Cnh Cost of network honeypot deployment
CH Total deception cost
CD Cost of ransomware development
Cx Cost of exfiltration
ρ Probability of successful honeytoken-based deception
τ Probability of successful honeypot-based deception
γ Probability of successful honeyfile-based deception
ζ Probability of successful network honeypot-based deception
Vi Value of data owned by ith target for the defender
V ′
i Value of data for the attacker after exfiltration

Vp Value of privacy of data
Ri Ransom demand proposed by attacker to ith target
bi Defender’s decision on data backup
di Attacker’s decision on ransomware development
ci Defender’s decision on whether to compromise
ei Attacker’s decision on whether to decrypt of data
xi Attacker’s decision on whether to exfiltrate the data
p0 Natural probability of attacker being arrested when ei = 1, xi = 0

p1 Natural probability of attacker being arrested when ei = 1, xi = 1

p2 Natural probability of attacker being arrested when ei = 0, xi = 0

p3 Natural probability of attacker being arrested when ei = 0, xi = 1

T Attacker’s reputation. T > 0 if attacker decrypts data after
defender pays, or attacker does not decrypt data when defender
does not pay. T = 0 for all other cases

F Loss of attacker for being arrested (F > 0)

Stage 2 - Ransomware Development/Delivery: When no data backup is
present, the attacker decides whether or not to develop ransomware. Let the
decision to develop a ransomware for the ith subsystem be denoted as di. If
di = 0, i.e. if the attacker’s choice is to not develop ransomware, the game
ends. On the other hand, when the attacker chooses to develop ransomware (i.e.
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di = 1), the attacker develops the ransomware attack and incurs a cost CD for
the development of ransomware.

Stage 3 - Infection: Upon the development of ransomware, the attacker uses
diverse delivery mechanisms such as email phishing, drive-by download, or soft-
ware vulnerability exploitation approaches, to infect the desired subsystem. The
honeytokens lure the attacker into using fake access tokens with independent
and identical Bernoulli distribution with probability

ρ = 1 − e
−Cht∗nht

CD . (2)

The exponential function suggests that the probability decreases exponen-
tially with the product of the cost of honeytokens (Cht), the number of honey-
tokens (nht), and the reciprocal of the cost of ransomware development (CD).
All these parameters influence the likelihood of the attacker getting deceived by
the usage of honeytokens.

Stage 4 - Malware Installation: Once the attacker has access to some server,
the next step in the attack process will be the execution of a dropper. The drop-
per program leads to running of a successful installation of ransomware payload
to the victim’s computer. To counter the dropper program at each subsystem,
honeypots lure the attacker into installing their malware in a fake server ran-
domly with probability

τ = 1 − e
− Chp

CD . (3)

The exponential function suggests that the probability decreases exponen-
tially with the cost of deploying honeypots (Chp), and the reciprocal of the cost
of ransomware development (CD). All these parameters influence the likelihood
of the attacker getting deceived by the usage of honeyfiles during the malware
installation stage.

Stage 5 - Encryption: Once the attacker gains access to either the original file
structure or the honeypot within a given subsystem, the ransomware scans for
specific files that are deemed valuable, and locks them using a robust encryp-
tion algorithm to restrict user access. However, the honeyfiles deployed by the
defender in Stage 3 can steer the attacker away from the actual subsystem, and
entices the attacker to encrypt them with probability

γ = 1 − e
−Chf ∗nhf

CD . (4)

The exponential function suggests that the probability decreases exponen-
tially with the product of the cost of honeyfiles (Chf ), the number of honeyfiles
(nhf ), and the reciprocal of the cost of ransomware development (CD). All these
parameters influence the likelihood of the attacker getting deceived by the usage
of honeyfiles during the encryption stage. Upon successful encryption, a note
demanding a ransom of Ri for the release of the ith subsystem is sent to the
user.
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Once the attacker has access to the data, they can engage in exfiltration
at any stage of the game, even before administering the ransomware in the file
system. It is likely for attackers to perform data exfiltration before administering
the ransomware in the file system. For this work, we are discussing a generic
ransomware setting, such as the one discussed in [2], where the attacker can
release data after the compromise stage regardless of the compromise outcome.

Stage 6 - Compromise: Upon successful lock-down and the receipt of a ransom
note, the defender makes a binary decision ci regarding the payment of ransom.
Let ci = 1 denote the decision to pay the ransom, and ci = 0 otherwise. However,
if the attacker was successfully deceived (i.e. the attacker encrypted honeyfiles),
the defender will not pay the ransom.

Stage 7 - Decryption: If the defender decides to compromise and pay the
ransom, the attacker decides whether or not to decrypt the data and release
the subsystem back to the defender. Let ei = 1 denote the decision to decrypt
the subsystem and give back access to the defender. Otherwise, if ei = 0, the
attacker will not decrypt the data and the defender loses the data permanently.
Note that if the attacker keeps the promise (i.e. decrypts data upon receiving
the ransom, or does not decrypt if the ransom is not paid), the attacker gains a
reputation T . Otherwise, the attacker receives a zero reputation.

Stage 8 - Exfiltration: In addition to collecting ransom, assume that the
attacker may also exfiltrate data and cause privacy breach. Let xi = 1 denote
the decision to exfiltrate the data from the ith subsystem, and xi = 0 otherwise.
If the attacker chooses to exfiltrate (i.e. xi = 1), then the attacker incurs a cost
of Cx for each subsystem.

Stage 9 - Exfiltration Deception: During exfiltration (i.e. when xi = 1), the
attacker moves the data/files to another database through a network. In order
to prevent successful exfitration, the network honeypot lures the attacker into
moving exfiltrated data through a fake network with probability

ζ = 1 − e
−Cnh

CD . (5)

If the data in the ith subsystem is successfully exfiltrated, the attacker obtains
a value of V ′

i . On the other hand, the defender incurs a cost Vp for the privacy
breach.

Stage 10 - Arrest: Depending on the defender’s decision to pay ransom ci
and the attacker’s decryption and exfiltration decisions (ei, xi) respectively, the
attacker may get identified, caught and arrested with a different probability
according to one of the following three cases: (i) Let p0 denote the probability
of the attacker getting arrested after decrypting the data (ei = 1), while not
performing exfiltration (xi = 0), (ii) Let p1 denote the probability of the attacker
getting arrested after decrypting the data (ei = 1) and performing exfiltration
(xi = 1), (iii) Let p2 denote the probability of the attacker getting arrested
upon deciding not to decrypt the data (ei = 0) and not performing exfiltration
(xi = 0), and (iv) Let p3 denote the probability of the attacker getting arrested
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Fig. 2. Subtree of the attacker-defender game, comprising of Stages 1–6.

Fig. 3. Subtree of the Attacker-Defender Game, comprising of Stages 6–10.

upon deciding not to decrypt the data (ei = 0), but perform exfiltration (xi = 1).
If arrested, the attacker incurs a large cost of F .

Remark: Note that Stages 3, 4, 5, 9, and 10 are chance stages, which intro-
duce uncertainty in the interaction outcome. This uncertainty emerges from the
inherent stochasticity present within the interaction, but does not arise due to
any agent’s decision.

The above multi-stage interaction between the ransomware attacker and
the defender is modeled as a complete-information extensive-form game Γ =
{N , G,U , Ũ}, where
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– N = {D,A} comprises of the two players (D stands for defender and A stands
for attacker),

– G represents the decision tree shown in Figs. 2 and 3 that includes the play-
order, chance probabilities, and strategies at both attacker and defender, and

– U and Ũ denotes the utility functions at the defender and attacker respec-
tively, which are defined in Table 2.

The goal of this paper is to evaluate the subgame-perfect Nash equilibrium
(SPNE) for the game Γ . A closed-form equilibrium analysis is presented in the
following section using backward induction principles.

Table 2. Utility functions and their payoffs

Ui,k,0 =

{
0, if k = 0

−CH , otherwise
Ui,k,1 =

{
0, if k = 0

−CH , otherwise
Ui,k,2 =

{
0, if k = 0

−CH , otherwise
Ũi,k,0 = T − CD − F Ũi,k,1 = T − CD Ũi,k,2 = T − CD − F − Cx

Ui,k,3 =

{
0, if k = 0

−CH , otherwise
Ui,k,4 =

{
−Vp, if k = 0

−Vp − CH , otherwise
Ui,k,5 =

{
−Vp, if k = 0

−Vp − CH , otherwise
Ũi,k,3 = T − CD − Cx Ũi,k,4 = T − CD + V ′

i − F − Cx Ũi,k,5 = T − CD + V ′
i − Cx

Ui,k,6 =

{
Vi, if k = 0

Vi − CH , otherwise
Ui,k,7 =

{
Vi, if k = 0

Vi − CH , otherwise
Ui,k,8 =

{
Vi, if k = 0

Vi − CH , otherwise
Ũi,k,6 = −CD − F Ũi,k,7 = −CD Ũi,k,8 = −CD − F − Cx

Ui,k,9 =

{
Vi, if k = 0

Vi − CH , otherwise
Ui,k,10 =

{
Vi − Vp, if k = 0

Vi − Vp − CH , otherwise
Ui,k,11 =

{
Vi − Vp, if k = 0

Vi − Vp − CH , otherwise
Ũi,k,9 = −CD − Cx Ũi,k,10 = −CD + V ′

i − F − Cx Ũi,k,11 = −CD + V ′
i − Cx

Ui,k,12 =

{
−Ri, if k = 0

−Ri − CH , otherwise
Ui,k,13 =

{
−Ri, if k = 0

−Ri − CH , otherwise
Ui,k,14 =

{
−Ri, if k = 0

−Ri − CH , otherwise
Ũi,k,12 = Ri − CD − F Ũi,k,13 = Ri − CD Ũi,k,14 = Ri − CD − F − Cx

Ui,k,15 =

{
−Ri, if k = 0

−Ri − CH , otherwise
Ui,k,16 =

{
−Ri − Vp, if k = 0

−Ri − Vp − CH , otherwise
Ui,k,17 =

{
−Ri − Vp, if k = 0

−Ri − Vp − CH , otherwise
Ũi,k,15 = Ri − CD − Cx Ũi,k,16 = Ri − CD + V ′

i − F − Cx Ũi,k,17 = Ri − CD + V ′
i − Cx

Ui,k,18 =

{
−Ri + Vi, if k = 0

Vi − Ri − CH , otherwise
Ui,k,19 =

{
Vi − Ri, if k = 0

Vi − Ri − CH , otherwise
Ui,k,20 =

{
Vi − Ri, if k = 0

Vi − Ri − CH , otherwise
Ũi,k,18 = Ri + T − CD − F Ũi,k,19 = Ri + T − CD Ũi,k,20 = Ri + T − CD − F − Cx

Ui,k,21 =

{
Vi − Ri, if k = 0

Vi − Ri − CH , otherwise
Ui,k,22 =

{
Vi − Ri − Vp, if k = 0

Vi − Ri − Vp − CH , otherwise
Ui,k,23 =

{
Vi − Ri − Vp, if k = 0

Vi − Ri − Vp − CH , otherwise
Ũi,k,21 = T + Ri − CD − Cx Ũi,k,22 = Ri + T − CD + V ′

i − F − Cx Ũi,k,23 = Ri + T − CD + V ′
i − Cx

4 Equilibrium Analysis

In this section, SPNE of the game Γ is evaluated in closed-form using backward
induction principles. Given the large size of the tree, we present our analysis
for every decision stage (i.e. Stages 8, 7, 6, 2 and 1 in the order of backward
induction) individually in the following subsections.

4.1 Stage 8: Attacker’s Best-Response Exfiltration Strategy

The first decision stage that manifests during the running of backward induction
approach is to evaluate the attacker’s best-response exfiltration strategy in Stage
8.
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Lemma 1. If the defender compromises (ci = 1) and the attacker opts to
decrypt the data (ei = 1), the best response for the attacker on data exfiltra-
tion (xi) is:

x∗
i (8i,k,3) =

{
1, if ζ ≥ ζ∗(8i,k,3)

0, otherwise
(6)

where the threshold ζ∗(8i,k,3) is given by

ζ∗(8i,k,3) =

(
p2Ũi,k,18 + (1 − p2)Ũi,k,19

)
−

(
p3Ũi,k,22 + (1 − p3)Ũi,k,23

)
(
p3Ũi,k,20 + (1 − p3)Ũi,k,21

)
−

(
p3Ũi,k,22 + (1 − p3)Ũi,k,23

) (7)

Proof. In Fig. 3, the node in Stage 8 with a history ci = 1 and ei = 1 is labeled
as 8i,k,3. At this node, the attacker has to pick xi ∈ {0, 1} such that its expected
utility is maximized.

The expected utility obtained by the attacker at node 8i,k,3 for choosing
xi = 1 and xi = 0 are respectively given by

Ũ(xi = 1|8i,k,3) = ζ
(
p3Ũi,k,20 + (1 − p3)Ũi,k,21

)
+ (1 − ζ)

(
p3Ũi,k,22 + (1 − p3)Ũi,k,23

)
, (8)

and Ũ(xi = 0|8i,k,3) = p2Ũi,k,18 + (1 − p2)Ũi,k,19. (9)

Note that xi = 1 is the best response exfiltration strategy if Ũ(xi = 1|8i,k,3) ≥
Ũ(xi = 0|8i,k,3), i.e.,

ζ
(
p3Ũi,k,20 + (1− p3)Ũi,k,21

)
+ (1− ζ)

(
p3Ũi,k,22 + (1− p3)Ũi,k,23

)
> p2Ũi,k,18 + (1− p2)Ũi,k,19. (10)

The inclination for data exfiltration stems primarily from the attacker’s per-
ception of the exfiltrated data as a strategic asset. This strategic value lies in
its potential to provide added leverage for subsequent attacks or negotiations.
Additionally, a financial motive is present with the stolen information being seen
as valuable on the illicit markets. Moreover, the decision to exfiltrate data may
be driven by a lack of trust or opportunistic behavior of the attacker and using
it as a means of insurance or an alternative revenue source post-ransom pay-
ment. Upon rearranging the terms, the attacker’s best response to exfiltrate is
to choose xi = 1 if the network honeypot deceives the attacker with probability
ζ ≥ ζ∗(8i,k,3), where ζ∗(8i,k,3) is defined in Eq. (7).

Lemma 2. If the defender compromises and the attacker does not decrypt the
data, the optimal strategy for the attacker on data exfiltration (xi) is:

x∗
i (8i,k,2) =

{
1, if ζ ≥ ζ∗(8i,k,2)

0, otherwise,
(11)

where the threshold ζ∗(8i,k,2) is given by

ζ∗(8i,k,2) =

(
p0Ũi,k,12 + (1 − p0)Ũi,k,13

)
−

(
p1Ũi,k,16 + (1 − p1)Ũi,k,17

)
(
p1Ũi,k,14 + (1 − p1)Ũi,k,15

)
−

(
p1Ũi,k,16 + (1 − p1)Ũi,k,17

) (12)
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Proof. In Fig. 3, the node in Stage 8 with a history ci = 1 and ei = 0 is labeled
as 8i,k,2. At this node, the attacker has to pick xi ∈ {0, 1} such that its expected
utility is maximized.

The expected utility obtained by the attacker at node 8i,k,2 for choosing
xi = 1 and xi = 0 are respectively given by

Ũ(xi = 1|8i,k,2) = ζ
(
p1Ũi,k,14 + (1 − p1)Ũi,k,15

)
+ (1 − ζ)

(
p1Ũi,k,16 + (1 − p1)Ũi,k,17

)

(13)

and Ũ(xi = 0|8i,k,2) = p0Ũi,k,12 + (1 − p0)Ũi,k,13.

(14)

Note that xi = 1 is the best response exfiltration strategy if Ũ(xi = 1|8i,k,2) ≥
Ũ(xi = 0|8i,k,2), i.e.

ζ
(
p1Ũi,k,14 + (1− p1)Ũi,k,15

)
+ (1− ζ)

(
p1Ũi,k,16 + (1− p1)Ũi,k,17

)
> p0Ũi,k,12 + (1− p0)Ũi,k,13. (15)

The attacker’s intent for exfiltration is similar to what is discussed in
Lemma 1. Upon rearranging the terms, the attacker’s best response to exfil-
trate is to choose xi = 1 if the network honeypot deceives the attacker with
probability ζ ≥ ζ∗(8i,k,2), where ζ∗(8i,k,2) is defined in Eq. (12).

Lemma 3. If the defender does not compromise (ci = 0) and the attacker opts
to decrypt the data (ei = 1), the best response for the attacker on data exfiltration
(xi) is:

x∗
i (8i,k,1) =

{
1, if ζ ≥ ζ∗(8i,k,1)

0, otherwise,
(16)

where the threshold ζ∗(8i,k,1) is given by

ζ∗(8i,k,1) =

(
p2Ũi,k,6 + (1 − p2)Ũi,k,7

)
−

(
p3Ũi,k,10 + (1 − p3)Ũi,k,11

)
(
p3Ũi,k,8 + (1 − p3)Ũi,k,9

)
−

(
p3Ũi,k,10 + (1 − p3)Ũi,k,11

) (17)

Proof. In Fig. 3, the node in Stage 8 with a history ci = 0 and ei = 1 is labeled
as 8i,k,1. At this node, the attacker has to pick xi ∈ {0, 1} such that its expected
utility is maximized.

The expected utility obtained by the attacker at node 8i,k,1 for choosing
xi = 1 and xi = 0 are respectively given by

Ũ(xi = 1|8i,k,1) = ζ
(
p3Ũi,k,8 + (1 − p3)Ũi,k,9

)
+ (1 − ζ)

(
p3Ũi,k,10 + (1 − p3)Ũi,k,11

)
, (18)

and Ũ(xi = 0|8i,k,1) = p2Ũi,k,6 + (1 − p2)Ũi,k,7. (19)

Note that xi = 1 is the best response exfiltration strategy if Ũ(xi = 1|8i,k,1) ≥
Ũ(xi = 0|8i,k,1), i.e.

ζ
(
p3Ũi,k,8 + (1 − p3)Ũi,k,9

)
+ (1 − ζ)

(
p3Ũi,k,10 + (1 − p3)Ũi,k,11

)
> p2Ũi,k,6 + (1 − p2)Ũi,k,7. (20)

The attacker’s intent for exfiltration is similar to what is discussed in Lemma 1.
Upon rearranging the terms, the attacker’s best response to exfiltrate is to choose
xi = 1 if the network honeypot deceives the attacker with probability ζ ≥
ζ∗(8i,k,1), where ζ∗(8i,k,1) is defined in Eq. (17).
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Lemma 4. If the defender does not compromise (ci = 0) and the attacker does
not decrypt the data (ei = 0), the best response for the attacker on data exfiltra-
tion (xi) is:

x∗
i (8i,k,0) =

{
1, if ζ ≥ ζ∗(8i,k,0)

0, otherwise,
(21)

where the threshold ζ∗(8i,k,0) is given by

ζ∗(8i,k,0) =

(
p0Ũi,k,0 + (1 − p0)Ũi,k,1

)
−

(
p1Ũi,k,4 + (1 − p1)Ũi,k,5

)
(
p1Ũi,k,2 + (1 − p1)Ũi,k,3

)
−

(
p1Ũi,k,4 + (1 − p1)Ũi,k,5

) (22)

Proof. In Fig. 3, the node in Stage 8 with a history ci = 0 and ei = 0 is labeled
as 8i,k,0. At this node, the attacker has to pick xi ∈ {0, 1} such that its expected
utility is maximized.

The expected utility obtained by the attacker at node 8i,k,0 for choosing
xi = 1 and xi = 0 are respectively given by

Ũ(xi = 1|8i,k,0) = ζ
(
p1Ũi,k,2 + (1 − p1)Ũi,k,3

)

+(1 − ζ)
(
p1Ũi,k,4 + (1 − p1)Ũi,k,5

)
,

(23)

and Ũ(xi = 0|8i,k,0) = p0Ũi,k,0 + (1 − p0)Ũi,k,1. (24)

Note that xi = 1 is the best response exfiltration strategy if Ũ(xi = 1|8i,k,0) ≥
Ũ(xi = 0|8i,k,0), i.e.,

ζ
(
p1Ũi,k,2 + (1 − p1)Ũi,k,3

)
+ (1 − ζ)

(
p1Ũi,k,4 + (1 − p1)Ũi,k,5

)

> p0Ũi,k,0 + (1 − p0)Ũi,k,1.
(25)

The attacker’s intent for exfiltration is similar to what is discussed in Lemma 1.
Upon rearranging the terms, the attacker’s best response to exfiltrate is to choose
xi = 1 if the network honeypot deceives the attacker with probability ζ ≥
ζ∗(8i,k,0), where ζ∗(8i,k,0) is defined in Eq. (22).

4.2 Stage 7: Attacker’s Best-Response Decryption Strategy

Per the attacker’s optimal decision on data exfiltration, the attacker’s decision
on whether to decrypt the data or not is given by the following lemmas.

Lemma 5. If the defender compromises (ci = 1), the best response for the
attacker on data decryption (ei) is:

e∗
i

(
7i,k,1

∣∣∣x∗
i (8i,k,3), x

∗
i (8i,k,2)

)
=

{
1, if λ(7i,k,1) ≥ 0,

0, otherwise,
(26)

where

λ(7i,k,1) = x∗
i (8i,k,3)

[
Ũ(xi = 1|8i,k,3) − Ũ(xi = 0|8i,k,3)

]
− x∗

i (8i,k,2)
[
Ũ(xi = 1|8i,k,2) − Ũ(xi = 0|8i,k,2)

]
+Ũ(xi = 0|8i,k,3) − Ũ(xi = 0|8i,k,2)

(27)
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Proof. In Fig. 3, the node in Stage 7 with a history ci = 1 is labeled as 7i,k,1.
At this node, the attacker has to pick ei ∈ {0, 1} such that its expected utility
is maximized.

The expected utility obtained by the attacker at node 7i,k,1 for choosing
ei = 1 and ei = 0 are respectively given by

Ũ(ei = 1|7i,k,1) = x∗
i (8i,k,3) · Ũ(xi = 1|8i,k,3) +

(
1 − x∗

i (8i,k,3)
)

· Ũ(xi = 0|8i,k,3), (28)

and Ũ(ei = 0|7i,k,1) = x∗
i (8i,k,2) · Ũ(xi = 1|8i,k,2) +

(
1 − x∗

i (8i,k,2)
)

· Ũ(xi = 0|8i,k,2). (29)

The attacker’s decision to decrypt the data can be attributed to several fac-
tors. A pivotal consideration is the establishment of trustworthiness as fulfilling
the agreement enhances the attacker’s reputation for reliability within the crim-
inal landscape. Additionally, adhering to an implicit criminal code of conduct
and seeking to avoid law enforcement attention provide strong motivations for
the attacker to proceed with decryption. The strategic move of honoring the
agreement not only fosters a perception of dependability but may also encour-
age future victims to comply with ransom demands.

Hence ei = 1 is the best response decryption strategy if

λ(7i,k,1) � Ũ(ei = 1|7i,k,1) − Ũ(ei = 0|7i,k,1) ≥ 0.

On the contrary, ei = 0 is the best response decryption strategy if λ(7i,k,1) < 0.

Lemma 6. If the defender does not compromise (ci = 0), the best response for
the attacker on data decryption (ei) is:

e∗
i

(
7i,k,0

∣∣∣x∗
i (8i,k,1), x

∗
i (8i,k,0)

)
=

{
1, if λ(7i,k,0) ≥ 0,

0, otherwise,
(30)

where λ(7i,k,0) = x∗
i (8i,k,1) · Ũ(xi = 1|8i,k,1)+(1−x∗

i (8i,k,1)) · Ũ(xi = 0|8i,k,1)−(
x∗
i (8i,k,0) · Ũ(xi = 1|8i,k,0) + (1 − x∗

i (8i,k,0)) · Ũ(xi = 0|8i,k,0)
)

Proof. In Fig. 3, the node in Stage 7 with a history ci = 0 is labeled as 7i,k,0.
At this node, the attacker has to pick ei ∈ {0, 1} such that its expected utility
is maximized.

The expected utility obtained by the attacker at node 7i,k,0 for choosing
ei = 1 and ei = 0 are respectively given by

Ũ(ei = 1|7i,k,0) = x∗
i (8i,k,1) · Ũ(xi = 1|8i,k,1) +

(
1 − x∗

i (8i,k,1)
)

· Ũ(xi = 0|8i,k,1)
(31)

and

Ũ(ei = 0|7i,k,0) = x∗
i (8i,k,0) · Ũ(xi = 1|8i,k,0) +

(
1 − x∗

i (8i,k,0)
)

· Ũ(xi = 0|8i,k,0)
(32)

The attacker’s decision for this lemma is similar to that in Lemma 5. Note that
ei = 1 is the best response decryption strategy if

λ(7i,k,0) � Ũ(ei = 1|7i,k,0) − Ũ(ei = 0|7i,k,0) ≥ 0.

On the contrary, ei = 0 is the best response decryption strategy if λ(7i,k,0) < 0.
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4.3 Stage 6: The Defender’s Decision-Making on Compromise

Lemma 7. The defender’s decision-making on compromise (ci) is given by:

c∗
i (6i,k|e∗

i ,x
∗
i ) =

{
1, if β(e∗

i ,x
∗
i ) > 0,

0, otherwise,
(33)

where β(e∗
i ,x

∗
i ) is given by

β(e∗
i ,x

∗
i ) = e∗

i (7i,k,1)
[
x∗
i (8i,k,3)U(9i,k,7) +

(
1 − x∗

i (8i,k,3)
)
U(9i,k,6)

]

+
(
1 − e∗

i (7i,k,1)
)[

x∗
i (8i,k,2)U(9i,k,5) +

(
1 − x∗

i (8i,k,2)
)
U(9i,k,4)

]

−e∗
i (7i,k,0)

[
x∗
i (8i,k,1)U(9i,k,3) +

(
1 − x∗

i (8i,k,1)
)
U(9i,k,2)

]

−
(
1 − e∗

i (7i,k,0)
)[

x∗
i (8i,k,0)U(9i,k,1) +

(
1 − x∗

i (8i,k,0)
)
U(9i,k,0)

]

(34)

Proof. The defender chooses to either compromise (ci = 1), or not pay the
ransom (ci = 0) such that the expected utility at node 6i,k is maximized.

The defender’s expected utility of choosing ci = 1 and ci = 0 at node 6i,k is
given by

U(ci = 1|6i,k) = e∗
i (7i,k,1)

[
x∗
i (8i,k,3)U(9i,k,7) +

(
1 − x∗

i (8i,k,3)
)
U(9i,k,6)

]

+
(
1 − e∗

i (7i,k,1)
)[

x∗
i (8i,k,2)U(9i,k,5) +

(
1 − x∗

i (8i,k,2)
)
U(9i,k,4)

] (35)

and
Ũ(ci = 0|6i,k) = e∗

i (7i,k,0)
[
x∗
i (8i,k,1)U(9i,k,3) +

(
1 − x∗

i (8i,k,1)
)
U(9i,k,2)

]

+
(
1 − e∗

i (7i,k,0)
)[

x∗
i (8i,k,0)U(9i,k,1) +

(
1 − x∗

i (8i,k,0)
)
U(9i,k,0)

] (36)

respectively, where

U(9i,k,7) = ζ [p3Ui,k,20 + (1 − p3)Ui,k,21] + (1 − ζ) [p3Ui,k,22 + (1 − p3)Ui,k,23] ,

U(9i,k,6) = p2Ui,k,18 + (1 − p2)Ui,k,19,

U(9i,k,5) = ζ [p1Ui,k,14 + (1 − p1)Ui,k,15] + (1 − ζ) [p1Ui,k,16 + (1 − p1)Ui,k,17] ,

U(9i,k,4) = p0Ui,k,12 + (1 − p0)Ui,k,13,

U(9i,k,3) = ζ [p3Ui,k,8 + (1 − p3)Ui,k,9] + (1 − ζ) [p3Ui,k,10 + (1 − p3)Ui,k,11] ,

U(9i,k,2) = p2Ui,k,6 + (1 − p2)Ui,k,7,

U(9i,k,1) = ζ [p1Ui,k,2 + (1 − p1)Ui,k,3] + (1 − ζ) [p1Ui,k,4 + (1 − p1)Ui,k,5] ,

U(9i,k,0) = p0Ui,k,0 + (1 − p0)Ui,k,1.

(37)

Defenders choose to pay a ransom when their data is encrypted due to prac-
tical considerations. If the encrypted data is crucial for business operations or
contains sensitive information, the cost of downtime and potential damage to rep-
utation becomes a driving factor. The complexity of decryption and the absence
of reliable backups can limit options, making payment the quickest way to regain
access. The defender will choose ci = 1 if

β(e∗
i ,x

∗
i ) � U(ci = 1|6i,k) − U(ci = 0|6i,k) ≥ 0.

Otherwise, the best response strategy of the defender is ci = 0.
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4.4 Stage 2: Attacker’s Best-Response Ransomware Development
Strategy

Lemma 8. The attacker’s best response is to not develop the ransomware, i.e.
d∗
i (2i,3) = 0, when the defender backs up the data (i.e. bi = 1) and uses deception

(i.e. hi = 1).

Proof. In Fig. 2, the node in Stage 2 with a history bi = 1 and hi = 1 is labeled
as 2i,3. At this node, the attacker has to pick di ∈ {0, 1} such that its expected
utility is maximized.

The expected utility obtained by the attacker at node 2i,3 for choosing di = 1
and di = 0 are respectively given by

Ũ(di = 1|2i,3) = −CD, and Ũ(di = 0|2i,3) = 0. (38)

When the defender has made backups, developing ransomware becomes
pointless for the attacker. Backups allow the defender to quickly recover, elim-
inating the need to pay any ransom. This reduces the attacker’s leverage
and makes their efforts ineffective. Financial motivation for the attacker also
decreases when there’s a low chance of getting paid. Instead of gaining, the
attacker incurs a loss in the cost of ransomware development. The defender’s
proactive approach with backups not only safeguards against data loss but
also makes ransomware development an impractical and costly endeavor for the
attacker.

Since Ũ(di = 0|2i,3) > Ũ(di = 1|2i,3), di = 0 is the best response ransomware
development strategy.

Lemma 9. Attacker’s best response is to not develop the ransomware, i.e.
d∗
i (2i,2) = 0, when the defender backs up (i.e. bi = 1) but does not use deception

(i.e. hi = 0).

Proof. In Fig. 2, the node in Stage 2 with a history bi = 1 and hi = 0 is labeled
as 2i,2. At this node, the attacker has to pick di ∈ {0, 1} such that its expected
utility is maximized.

The expected utility obtained by the attacker at node 2i,2 for choosing di = 1
and di = 0 are respectively given by

Ũ(di = 1|2i,2) = −CD and Ũ(di = 0|2i,2) = 0 (39)

With the reasons similar to Lemma 8, since Ũ(di = 0|2i,2) > Ũ(di = 1|2i,2),
di = 0 is the best response ransomware development strategy.

Lemma 10. Attacker’s best response when defender does not back up (i.e.,bi =
0) but uses deception (i.e.,hi = 1) given by di is:

d∗
i (2i,1) =

{
1, if α(c∗

i ) > 0,
0, otherwise

(40)
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where
α(c∗

i ) = ρτ
[
γ
{

c∗
i (6i,1)Ũ(7i, 1, 0) + (1 − c∗

i (6i,1))Ũ(7i, 1, 1)
}

+(1 − γ)
{

c∗
i (6i,2)Ũ(7i, 2, 0) + (1 − c∗

i (6i,2))Ũ(7i, 2, 1)
}]

+ ρ(1 − τ)
[
γ
{

c∗
i (6i,3)Ũ(7i, 3, 0) + (1 − c∗

i (6i,3))Ũ(7i, 3, 1)
}

+(1 − γ) ∗
{

c∗
i (6i,4) ∗ Ũ(7i, 4, 0) + (1 − c∗

i (6i,4)) ∗ Ũ(7i, 4, 1)
}]

+ (1 − ρ)τ
[
γ
{

c∗
i (6i,5)Ũ(7i, 5, 0) + (1 − c∗

i (6i,5))Ũ(7i, 5, 1)
}

+(1 − γ)
{

c∗
i (6i,6)Ũ(7i, 6, 0) + (1 − c∗

i (6i,6))Ũ(7i, 6, 1)
}]

+ (1 − ρ)(1 − τ)
[
γ
{

c∗
i (6i,7)Ũ(7i, 7, 0) + (1 − c∗

i (6i,7))Ũ(7i, 7, 1)
}

+(1 − γ)
{

c∗
i (6i,8)Ũ(7i, 8, 0) + (1 − c∗

i (6i,8))Ũ(7i, 8, 1)
}]

(41)

Proof. In Fig. 2, the node in Stage 2 with a history bi = 0 and hi = 1 is labeled
as 2i,1. At this node, the attacker has to pick di ∈ {0, 1} such that its expected
utility is maximized.

The expected utility obtained by the attacker at node 2i,1 for choosing di = 1
and di = 0 are respectively given by

Ũ(di = 1|2i,1) = ρτ
[
γ
{

c∗
i (6i,1)Ũ(7i, 1, 0) + (1 − c∗

i (6i,1))Ũ(7i, 1, 1)
}

+(1 − γ)
{

c∗
i (6i,2)Ũ(7i, 2, 0) + (1 − c∗

i (6i,2))Ũ(7i, 2, 1)
}]

+ ρ(1 − τ)
[
γ
{

c∗
i (6i,3)Ũ(7i, 3, 0) + (1 − c∗

i (6i,3))Ũ(7i, 3, 1)
}

+(1 − γ) ∗
{

c∗
i (6i,4) ∗ Ũ(7i, 4, 0) + (1 − c∗

i (6i,4)) ∗ Ũ(7i, 4, 1)
}]

+(1 − ρ)τ
[
γ
{

c∗
i (6i,5)Ũ(7i, 5, 0) + (1 − c∗

i (6i,5))Ũ(7i, 5, 1)
}

+(1 − γ)
{

c∗
i (6i,6)Ũ(7i, 6, 0) + (1 − c∗

i (6i,6))Ũ(7i, 6, 1)
}]

+(1 − ρ)(1 − τ)
[
γ
{

c∗
i (6i,7)Ũ(7i, 7, 0) + (1 − c∗

i (6i,7))Ũ(7i, 7, 1)
}

+(1 − γ)
{

c∗
i (6i,8)Ũ(7i, 8, 0) + (1 − c∗

i (6i,8))Ũ(7i, 8, 1)
}]

(42)

and Ũ(di = 0|2i,1) = 0. (43)

The absence of data backups increases the attacker’s leverage as valuable and
critical data becomes vulnerable to encryption. This vulnerability persists even
if the defender employs deception techniques to lure or mislead the attacker as
the potential gains from exploiting the lack of data backups outweighs the risks
associated with potential deception. This situation raises the likelihood of the
defender paying the ransom to regain access to crucial information and amplifies
the attack’s impact by causing significant disruption to business operations.
Financial motivation and the limited recovery options for the defender further
incentivize the attacker to pursue ransomware development as an effective means
of achieving their goals. Note that di = 1 is the best response ransomware
development strategy if Ũ(di = 1|2i,1) ≥ Ũ(di = 0|2i,1), i.e., α(c∗

i ) > 0. On the
contrary, di = 0 is the best response decryption strategy if α(c∗

i ) < 0.

Lemma 11. Attacker’s best response when defender does not back up (i.e. bi =
0) and does not use deception (i.e. hi = 0) given by di is:

d∗
i (2i,0) =

{
1, if Ũ(6i,0) > 0,
0, otherwise

(44)
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Proof. In Fig. 2, the node in Stage 2 with a history bi = 0 and hi = 1 is labeled
as 2i,0. At this node, the attacker has to pick di ∈ {0, 1} such that its expected
utility is maximized.

The expected utility obtained by the attacker at node 2i,0 for choosing di = 1
and di = 0 are respectively given by

Ũ(di = 1|2i,0) = Ũ(6i,0) and Ũ(di = 0|2i,0) = 0 (45)

With reasons similar to Lemma 10, note that di = 1 is the best response ran-
somware development strategy if Ũ(di = 1|2i,0) ≥ Ũ(di = 0|2i,0), i.e. Ũ(6i,0) > 0.
On the contrary, di = 0 is the best response decryption strategy if Ũ(6i,0) < 0.

4.5 Stage 1: Defender’s Decision-Making on Data Backup
and Deception

The defender’s decision-making on Stage 1 for the ith subsystem considers the
product of the backup decision i.e. bi and deception decision i.e. hi making it a
bilinear problem. For the ith subsystem, the defender’s utility is given by:

Ui(1) =
[
(1− bi) · (1− hi) · U(2i,0) + (1− bi) · (hi) · U(2i,1) + (bi) · (1− hi) · U(2i,2) + bi · hi · U(2i,3)

]

(46)
Combining the problem across all the N subsystems, the defender wishes to

max
(b1,h1),··· ,(bN ,hN )

N∑
i=1

[
(1− bi)(1− hi)U(2i,0) + (1− bi)hiU(2i,1) + bi(1− hi)U(2i,2) + bihiU(2i,3)

]

(47)
In vector notation, let y = [b1, h1, · · · , bi, hi, · · · , bN , hN ]T denote the deci-

sion variable at node 1. Then, the aforementioned optimization problem can be
rewritten as the following mixed-integer linear program

max
y

yTΘy + θT y + δ, (48)

where

Θ =

⎡
⎢⎣

Θ1 · · · 0
...

. . .
...

0 · · · ΘN

⎤
⎥⎦ is a block-diagonal matrix with

Θi =
[

0 0
U(2i,0) − U(2i,1) − U(2i,2) + U(2i,3) 0

]
,

θ =

⎡
⎢⎢⎢⎢⎢⎣

U(21,2) − U(21,0)
U(21,1) − U(21,0)

...
U(2N,2) − U(2N,0)
U(2N,1) − U(2N,0)

⎤
⎥⎥⎥⎥⎥⎦

, and δ =
N∑
i=1

U(2i,0).

(49)

Since the above problem is a binary quadratic program, the solution cannot
be evaluated in closed-form (a finite number of operations, using a given set of
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functions and mathematical operations). Instead, the problem has to be compu-
tationally solved using a standard integer-programming algorithm to maximize
and find the defender’s best response for this stage.

5 Ransomware Defense in Healthcare: A Case Study

Ransomware attacks affect the healthcare industry leading to the slowing of
critical processes to make them completely inoperable and making important
information inaccessible [7]. It is important to analyze our work with respect
to the behavior in the real world where ransomware has been highly rampant
in the healthcare industry. However, it is difficult to get a well-formed dataset
that provides information on different parameters such as ransomware amount
demanded, value of data for the victim, cost of ransomware development, com-
promised amount, value of data privacy (breach of data), etc. To accurately
portray this information we had to collect information from a variety of cred-
ible sources including news, blogs, and statistics. Our parameter settings for
the experiment and numerical analysis thus include information collected from
these sources and is depicted in the Table 3. On average the ransomware amount
demanded by the cybercriminals in a healthcare sector compromise ranges from
$0.25 million to $5 million with a mean of $2.63 million whereas a single attack
can cost a healthcare provider about $112 million [10]. The average cost of a
healthcare data breach has risen to $10.93 million [5] leading to data privacy
compromise. In [9], it is discussed that one healthcare sector invested around $8
million towards cybersecurity. We set the parameters for cyber deception using
the honeypot, honeytoken, honeyfiles based on their costs from discussed liter-
ature from Sect. 2 whereas the numbers are derived by considering $1 million
of the overall cybersecurity investment towards cyber deception. The loss of the
attacker after getting caught in fact can be considered in terms of the amount
being recovered, and jail time, among others. For the experiment, it is consid-
ered to be twice as much of the ransomware amount requested as it is difficult
to quantify aspects other than the amount recovered. For cybercrimes such as
phishing and ransomware, only 5% of cybercriminals are apprehended for their
crimes [4]. This goes to show how difficult it is to apprehend cyber criminals.
By using deception techniques, we intend to engage attackers with the targeted
systems enough to buy time for cybercriminals to be tracked. The probability of

Table 3. Parameters Settings in the Experiment for Healthcare Industry Ransomware
Breach.

Fig. T CD F Cx Vi Vp Ri V ′
i Cht nht Chp Chf nhf Cnh p0 p1 p2 p3

4 3 m – – 1000 112 m 10.93 m 2.63 m 4.38 m 0.05 0.67 m 0.08 m 0.08 m 0.5 m 0.1 m 0.1 0.15 0.18 0.2
5 3 m – 5.25 m 1000 112 m 10.93 m 2.63 m 4.38 m 0.05 0.67 m – 0.08 m 0.5 m 0.1 m 0.1 0.15 0.18 0.2
6 3 m 0.1 m – – 112 m 10.93 m 2.63 m 4.38 m 0.05 0.67 m 0.08 m 0.08 m 0.5 m 0.1 m 0.1 0.15 0.18 0.2
7 3 m – 5.25 m 1000 112 m 10.93 m 2.63 m 4.38 m 0.05 0.67 m – 0.08 m 0.5 m – 0.1 0.15 0.18 0.2
8 3 m 0.1 m 5.25 m 1000 112 m 10.93 m 2.63 m – 0.05 0.67 m – 0.08 m 0.5 m 0.1 m 0.1 0.15 0.18 0.2
9 3 m 0.1 m 5.25 m 1000 112 m 10.93 m 2.63 m – 0.05 0.67 m 0.08 m – 0.5 m 0.1 m 0.1 0.15 0.18 0.2
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getting apprehended by law enforcers should rise given the deception methods
are designed to slow down the attackers and/or stop them from attacking. We
define the probability values based on this observation.

6 Numerical Results and Discussion

6.1 Game Experiment Result

The computation experiments are carried out on a single Intel Xeon CPU oper-
ating at 2.20GHz equipped with 12 GB of RAM and a Tesla K80 accelerator. All
the required programs for the experiments were developed in Python and exe-
cuted on this specific configuration. The experiment codebase can be accessed
from the GitHub Repository [2].

The observed trend in Fig. 4, where the attacker utility initially increases with
the cost of ransomware development CD and then starts to decrease is attributed
to the dynamic interplay between the increasing sophistication of the ransomware
and the defender’s strategic response. The observed relationship between CD and
attacker utility is further nuanced by the loss of the attacker for being arrested
F . A lower value of F encourages a more risk-tolerant approach, contributing
to the initial increase in attacker utility, while higher values of F may prompt
risk-averse behavior, leading to a subsequent decrease. As CD rises, the attacker
may invest in more advanced ransomware, making it initially more potent and
profitable. However, the defender’s investment in deception techniques to bolster
their cybersecurity defenses creates a threshold beyond which further increases
in CD yield diminishing returns for the attacker.

Fig. 4. Impact of attacker loss F and cost of ransomware development CD on attacker
utility.
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Fig. 5. Impact of cost of honeypot Chp and cost of ransomware development CD on
attacker utility.

Fig. 6. Impact of cost of exfiltration Cx and attacker loss F on attacker utility.

In Fig. 5, the observed trend in the attacker’s utility as CD increases aligns
with the anticipation of deception techniques. Until reaching a threshold, the
attacker finds it increasingly cost-effective to develop ransomware. However,
beyond this threshold, there is a diminishing return which leads to a linear
decline in utility. The effectiveness of this strategy is influenced by Chp with
lower values making ransomware attacks more attractive early on, followed by
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a linear decrease in utility. This suggests that attackers strategically adapt to
the evolving security landscape weighing the cost and benefits of different attack
methods.

In Fig. 6, the linear decrease in attacker utility as Cx increases indicates
a direct and proportional relationship between Cx and F . This trend suggests
that the economic burden on the attacker rises linearly with the cost of exfil-
tration. The observed behavior is indicative of a deterrent effect, wherein higher
exfiltration costs discourage attackers due to the linear impact on their overall
utility.

Fig. 7. Impact of cost of n/w honeypot Cnh and cost of ransomware development CD

on attacker utility.

In Fig. 7, the observed logarithmic increase in attacker utility with varying
CD for different values of Cnh suggests that the impact of increasing countermea-
sures may have diminishing returns for the attacker. At lower Cnh, the attacker
finds it more profitable to invest in ransomware development which leads to
a sharper increase in utility. However, for higher Cnh, the incremental gain in
attacker utility diminishes. This reflects a balance between the defender’s coun-
termeasures and the attacker’s risk tolerance.

The logarithmic curves observed in Fig. 8 and Fig. 9 indicate diminishing
returns on defensive investments for different values of Vi. Both figures show
that higher values of Vi lead to greater utility for the defender. Notably, the
utility is consistently higher for the Cost of Network Honeypot Deployment Cnh

compared to Chp for equivalent Vi and investment in deception techniques. This
implies that network honeypots are more effective in enhancing the defender’s
utility as they provide a stronger deterrence against attackers in the current game
framework. The exponential relationship highlights the importance of optimizing
resource allocation in ransomware attacks.
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Fig. 8. Impact of cost of n/w honeypot Cnh and defender’s value of data Vi on defender
utility.

Fig. 9. Impact of cost of honeypot Chp and defender’s value of data Vi on defender
utility.

Table 4. Parameters settings for comparing the game outcomes with and without the
deception.

Fig. T CD F Cx Vi Vp Ri V ′
i Cht nht Chp Chf nhf Cnh p0 p1 p2 p3

10 1m 0.1m – 10000 112m 10.93m – 4.38m 0.05 0.67m 0.08m 0.08m 0.5m 0.08m 0.06 0.15 0.18 0.2
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6.2 Comparison with Ransomware Game Model in the Literature

We compare our numerical results and game performance to the one presented
in [42] to show how use of cyber deception achieved by using deception tech-
niques discussed in the paper can be beneficial. The compared paper presents
a theoretical approach that uses parameters that are simulated. We considered
various common parameters in the two different approaches to show the impact
of deception. The parameter settings for the comparison are presented in Table 4.
Looking at Fig. 10, a notable trend emerges in the attacker’s utility during com-
parison where A is the utility from the compared paper, while B is from the
current game context. The attacker’s utility exhibits a slower rate of increase
shown by dotted line that is attributed to heightened uncertainties stemming
from deceptive elements. This discrepancy in the rate of increase is particularly
evident as we plot against R. This observation leads us to conclude that the
incorporation of deception techniques serves as an effective measure in shaping
the strategic landscape of the adversarial game, offering the defender a valu-
able tool to influence and mitigate the attacker’s utility growth over different
scenarios.

Fig. 10. Comparison of attacker utilities for ransomware amount R in A [42] and B
(this work).

7 Conclusion and Future Work

In this paper, we presented a multi-stage ransomware game considering state-
of-the-art deception strategies in the form of honey-x deployable to different
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stages of the ransomware attack. We evaluated Subgame-Perfect Nash Equi-
librium (SPNE) for the game in closed form using backward induction prin-
ciples and standard integer programming. We performed a numerical analysis
of the developed game to evaluate the strategies given a realistic game model
using real-world data and statistics relating to the healthcare industry. It is
seen that the use of deception technologies is favorable to the defender towards
thwarting cyber-criminals with higher chances of getting caught. Our findings
pave the way for future research and practical applications to strengthen the
resilience of critical systems against ransomware threats. This work portrays a
complete game as a baseline which can be extended to an exploration of a non-
deterministic/incomplete game model for the given problem. Furthermore, it can
be extended to experimentation under consideration of more than one subsystem
as discussed in the game model.
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Abstract. Deception is helpful for agents masking their intentions from
an observer. We consider a team of agents deceiving their supervisor. The
supervisor defines nominal behavior for the agents via reference policies,
but the agents share an alternate task that they can only achieve by devi-
ating from these references. As such, the agents use deceptive policies to
complete the task while ensuring that their behaviors remain plausible
to the supervisor. We propose a setting with centralized deceptive pol-
icy synthesis and decentralized execution. We model each agent with a
Markov decision process and constrain the agents’ deceptive policies so
that, with high probability, at least one agent achieves the task. We then
provide an algorithm to synthesize deceptive policies that ensure the
deviations of all agents are small by minimizing the worst Kullback-
Leibler divergence between any agent’s deceptive and reference policies.
Thanks to decentralization, this algorithm scales linearly with the num-
ber of agents and also facilitates the efficient synthesis of reference poli-
cies. We then explore a more general version of the deceptive policy
synthesis problem. In particular, we consider a supervisor who selects a
subset of agents to eliminate based on the agents’ behaviors. We give
algorithms to synthesize deceptive policies so that, after the supervisor
eliminates some agents, the remaining agents complete the task with
high probability. We demonstrate the developed methods in a package
delivery example.

Keywords: Team deception · Markov decision processes · Centralized
planning · decentralized execution

1 Introduction

In interactions with asymmetric information, agents can use deception to create
an advantage against an opponent. Examples of applications where deception
is useful include human-robot interaction [9] and intrusion or defense of cyber
systems [13,15]. We consider a setting where a system manager assigns policies
to the system’s components so that they complete a task in a distributed manner.
For example, one may assign decentralized policies to a team of aerial vehicles to
complete a search task [2]. An adversary who gains control of the components,
such as an external intruder, may change the components’ policies to serve their
own goals. However, the system manager may supervise the agents. As such, the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Sinha et al. (Eds.): GameSec 2024, LNCS 14908, pp. 177–197, 2025.
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adversary must choose deceptive policies that deviate from assigned behavior in
a plausible manner. Otherwise, the manager will detect the deviation.

We study the synthesis of deceptive policies for the components so that we
may understand the weaknesses of these systems and improve their security.
To be consistent with [18], we label components as agents and the manager
as their supervisor. Figure 1 then shows the setup we consider. The supervisor
first assigns reference policies to the agents. The agents then collude to find
deceptive policies so that the agents complete a shared alternate task. The agents
must choose deceptive policies so that, after the supervisor observes the agents’
behavior, they do not detect the agents’ deviations and eliminate them.

Fig. 1. a) Supervisor assigns reference policies. b) Agents decide on deceptive policies.
c) Agents execute their policies in the environment. d) Supervisor eliminates a subset
of agents based on observed behavior.

We model each agent with a Markov decision process (MDP), and we define
success for the team as any agent reaching the goal in their MDP. In particular,
certain states in each MDP represent the agents’ shared reachability task. The
agents’ deceptive policies then must satisfy the constraint that, with high prob-
ability, at least one agent reaches a target state. For example, in a surveillance
task, only one agent must deviate to obtain footage of a secure location.

The agents need centralized synthesis to complete their shared task with
high probability, but we limit the agents to decentralized policies to improve
the tractability of synthesis and remove the need for communication. The use of
decentralized policies is a shotgun approach. Each agent follows a policy inde-
pendently from the other agents and achieves the task with a small probability,
but collectively, the agents achieve the task with high probability.

We use Kullback-Leibler (KL) divergence, as often used in security settings
[3,16,22], to measure deviations between agent behavior and the reference policy.
In stochastic environments, paths that achieve the agents’ task may be feasible
under the reference policy, but the likelihood of the paths informs the supervisor’s
belief about whether an agent is deceptive. The agents can make their paths
plausible under the reference policy by ensuring KL divergence is small.

We study two versions of deceptive policy synthesis, which differ in how
the agents avoid elimination and whether the agents use decoys. We first for-
mulate deceptive policy synthesis as ensuring all agents’ deviations are small.
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In particular, we formulate worst-case deceptive policy synthesis as minimizing
the worst KL divergence among all agents. We then explore settings in which,
after the supervisor eliminates some agents, others may complete the task. By
choosing policies carefully, one may allocate decoy agents, which the supervi-
sor eliminates. In elimination-aware deceptive policy synthesis, we formulate the
supervisor’s elimination procedure and explore the synthesis of policies such that
when the supervisor eliminates decoy agents, the remaining agents succeed.

We give efficient algorithms for each synthesis problem. The shotgun app-
roach we take leads to a non-convex reachability constraint for these problems.
However, we give an efficient method to find globally optimal solutions to worst-
case deceptive policy synthesis via a sequence of convex optimization problems.
We also discuss how the supervisor may use this algorithm to increase system
security by improving their reference policies. We then explore restrictions to
the supervisor’s elimination procedure to make elimination-aware deceptive pol-
icy synthesis more tractable. We solve this problem by extending the algorithm
provided for worst-case deceptive policy synthesis to allocate decoy agents.

1.1 Related Work

We discuss several areas relevant to our work, including team deception, KL
divergence in security, deception of observers, and decentralized MDPs.

Team Deception. Various disciplines study application-specific team decep-
tion. Examples include the clustering of deceivers in online games [37] or the
use of decoy agents to aid a leader in misdirecting a multi-robot team [30]. In
contrast to application-specific approaches, we explore the synthesis of decep-
tive policies for a team of agents represented by MDPs. Existing approaches
for team deception include mean-field approaches [7] and reinforcement learning
[12]. In contrast, we explore optimization-based approaches in a non-mean-field
regime. Furthermore, these works focus on the problem of obscuring a task while
we explore the concealment of the policy used to achieve a task. Prior work
also explores secure multi-agent planning [14,27,34,38]. These works represent
security with opacity-like formulations, where an observer must not be able to
determine that the agents have visited some state. Finally, hidden role games
are team games where agents are unaware of the team composition. Existing
literature explores equilibrium computation [6] and learning-based approaches
[1,33,35].

KL Divergence and Security. Most relevant to our setting is the synthesis of
deceptive policies in MDPs using KL divergence [18]. Deceptive policy synthesis
via KL divergence minimization admits a convex formulation with dimension
polynomial in the MDP size. One may also formulate similar KL divergence
minimization problems for partially observable agent dynamics [19], continuous
dynamics [29], and stochastic games [20]. Our work contrasts [18,19,29] with
the addition of multiple supervised agents. One could use the formulation in
[18] to explore multi-agent settings, but the resulting implementation would be
intractable for many agents and would require communication between agents.
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The shotgun approach we use, with decentralized execution, is more tractable
and does not need communication. More generally, KL divergence appears in
analyzing attack detection [3,16,22]. For example, in the context of input replace-
ment attacks in a linear system, KL divergence relates to an attack’s stealthiness
[3].

Deception of Observers. Various works explore formulating policies to mask
agents’ intent from observers in single-agent settings. Quantitative deception
literature includes approaches based on minimizing KL divergence, i.e. expected
log-likelihood ratio, [18,19,29], as well as constraining the probability of the log-
likelihood ratio exceeding a threshold [25]. Meanwhile, in qualitative intention
deception, an attacker ensures that observations generated by their behavior
are consistent with observations generated by non-deceptive agents [11]. Again,
in contrast to [11,25], we consider multiple observed agents. Deceptive path
planning also involves an agent masking their intent from an adversary by finding
paths that delay an observer’s recognition of the agent’s goal [10,26]. We consider
a distinct problem from deceptive path planning, as in our setting, the agents
obscure the decision-making process used to reach a state rather than the state
itself. Finally, the likelihood ratio between the paths produced by hidden Markov
models defines the form of probabilistic opacity considered in [21] for verification.
This work is relevant to our work as we synthesize policies to control the log-
likelihood ratio of observations produced by two Markov chains.

Centralized Planning and Decentralized Execution. Our work relates to
decentralized execution approaches common in multi-agent learning and plan-
ning. For example, multi-agent reinforcement learning may use centralized learn-
ing with decentralized execution [24]. In planning, decentralized Markov decision
processes (Dec-MDPs) are most relevant to our setting. Solving Dec-MDPs is
NEXP-complete [5] in general and NP-complete with independent transitions [4].
However, some classes of Dec-MDPs, such as Dec-MDPs with additive rewards
and shared additive resource constraints, have efficient solution methods [28].
Additionally, heuristic methods provide good solutions for chance-constrained
problems with additive rewards [36]. We explore a chance-constrained problem
where the reward has a maximum structure rather than an additive structure,
and we show this maximum structure allows globally optimal policy synthesis.

2 Preliminaries

For n objects ai indexed by i = 1, . . . , n, the collection is (ai)ni=1. The set [n]
contains the natural numbers 1, . . . , n. For probability distributions P1, P2 with
a support X , the KL divergence is KL(P1||P2) =

∑
x∈X P1(x) log (P1(x)/P2(x)).

Markov Decision Processes. A Markov decision process (MDP) M is a tuple
(S,A, P, s0) where S and A are state and action spaces, P is a transition function,
and s0 is an initial state. The set of actions available at state s is A(s), and the
probability of transitioning from state s to q with action a is P (s, a, q). The set
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of successor states of s, Succ(s), contains states q such that there exists an action
a ∈ A(s) with P (s, a, q) > 0. For an absorbing state, Succ(s) = {s}.

A stationary policy is a map π : S ×A → [0, 1] such that
∑

a∈A(s) π(s, a) = 1
for all s ∈ S. For an MDP M, Π(M) is the set of stationary policies on M. The
Cartesian product of these sets for n MDPs is Π(Mi) = Π(M1)× . . .×Π(Mn).
Note that Π(Mi) contains tuples of stationary policies, rather than policies on
the joint state. A path in an MDP with policy π is a state-sequence ξ = s0s1 . . .
such that, for all t,

∑
a∈A(st)

P (st, a, st+1)π(st, a) > 0. If each of n MDPs runs
for mr rounds, the jth path of MDP Mi is ξi,j . The sequence of paths from Mi

is ξi = (ξi,j)mr
j=1. A stationary policy π induces a distribution Γπ on the paths of

an MDP, and the KL divergence between policies π1 and π2 is KL (Γπ1 ||Γπ2).
For an MDP and stationary policy, the occupancy measure of state-action

pair (s, a) is xs,a =
∑∞

t=0 Pr(st = s|s0)π(s, a), and is the expected number of
visits to (s, a). By an abuse of notation, xs,q =

∑
a∈A(s) xs,aP (s, a, q) is the

occupancy flow from state s to q. Similarly, πs,q =
∑

a∈A(s) P (s, a, q)π(s, a) is
the probability of transitioning from state s to q under policy π.

For a single agent, Pr (s0 |= ♦R) is the probability of reaching set R with the
agent’s policy. For a set T of agents, with policies πi, Pr

(∃i ∈ T : si
0 |= ♦Ri

)
is

the probability that at least one agent reaches set Ri in their MDP. We refer to
this probability as the disjunctive reachability probability, and we remark that we
may compute this probability from the agents’ independent failure probabilities
using Pr

(∃i ∈ T : si
0 |= ♦Ri

)
= 1 − ∏n

i=1

(
1 − Pr

(
si
0 |= ♦Ri

))
.

3 Problem Formulation

We first discuss the problem setting and then formulate two synthesis problems.
For i = 1, . . . , n, an MDP Mi governs agent i. The supervisor assigns each

agent a stationary policy πS
i . The agents have a shared disjunctive reachability

task, and they achieve this task if any agent reaches set RA
i ⊆ Si in Mi. The

agents choose policies πA
i in a centralized manner such that Pr(∃i ∈ [n] : si

0 |=
♦RA

i ) ≥ νA. We assume s is absorbing for all s ∈ ⋃n
i=1 RA

i .

Fig. 2. An MDP for a package delivery
example. Circles are states, and arrows are
transitions. An arrow labeled a, P (s, a, q),
from state s to q, represents an action.

Running Example. We give an
aerial package delivery example for
ease of exposition in Fig. 2. Two
agents navigate the state space S =
{1, 2, 3, 4, ∗} with actions r (right)
and d (down). However, due to
weather, the agent may not go in the
commanded direction. Additionally,
weather may force a landing at state
∗ when taking action r at state 2. A
land action is also available, which
transitions the agent from state 2 to state ∗ with probability 1. Agent i’s target
is RA

i = {∗} for i ∈ {1, 2}.
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3.1 Worst-Case Deceptive Policy Synthesis

To make the team deceptive, we ensure all agents have low deviation, and we
quantify deviation with KL divergence using hypothesis testing arguments as
in [18]. The log-likelihood test is the most powerful hypothesis test for a given
significance level [8], and we assume the supervisor eliminates an agent i based
on this test after observing their path in the state space. Although the paths
are infinite, they terminate in some absorbing state, and we take a conserva-
tive approach by assuming the supervisor observes this whole path. For a null
hypothesis that agent i is not deceptive, i.e. πi = πS

i , and an alternative hypoth-
esis that agent i is deceptive, i.e. πi = πA

i , the KL divergence between πA
i and

πS
i gives the expected log-likelihood ratio. A policy with a lower KL divergence

then corresponds to a less detectable agent and a smaller deviation.
We define the optimal deceptive policies as minimizing the maximum KL

divergence, thus ensuring that all agents have low deviation. We formulate the
agents’ problem as finding optimal policies subject to reachability constraints.

Problem 1 (Worst-Case Deceptive Policy Synthesis). Given MDP Mi, reference
policy πS

i , set RA
i for each agent i ∈ [n], and threshold νA ≥ 0, solve

inf
(πA

1 ,...,πA
n )∈Π (Mi)

max
i∈[n]

KL
(
ΓπA

i ||ΓπS
i

)
(1a)

subject to Pr(∃i ∈ [n] : si
0 |= ♦RA

i ) ≥ νA. (1b)

The shotgun approach we use, with decentralized policies and centralized
planning, is beneficial as it leads to a scalable solution and does not need inter-
agent communication. One may also consider both centralized policies and plan-
ning to make the deceptive team as a whole less detectable. One achieves this
approach by using existing deceptive planning methods [18] on a joint MDP, with
state and action space formed by products of individual state and action spaces.
However, this approach has two issues. First, the approach does not scale, as
the joint MDP grows exponentially with n. Also, centralized policies need com-
munication during execution, which may be unavailable. We avoid these issues
by using decentralized execution and centralized planning, as commonly used in
multi-agent reinforcement learning [24]. Practically, a single party who knows the
deceptive agents’ identities finds the policies and transmits them to the agents.

Running Example (Continued). Consider reference policies given by πS
1 (1, r)

= πS
1 (2, r) = πS

2 (1, d) = πS
2 (2, r) = 1. Under these policies, Pr(s1

0 |= ♦{∗}∨ s2
0 |=

♦{∗}) = 0.2. For νA = 0.5, the agents must deviate to satisfy their specification.
An example of a feasible deviation is (πA

1 )(1, r) = (πA
1 )(2, land) = 1, and πA

2 =
πS

2 . The combined probability of success is then 0.9.

3.2 Elimination-Aware Deceptive Policy Synthesis

We explore the synthesis of deceptive policies such that, after a supervisor elimi-
nates some agents, the remaining agents complete the task with high probability.
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In some settings, the supervisor eliminates a subset of agents after an observa-
tion period, and the agents may want to ensure that the remaining agents still
achieve the task with high probability. Alternatively, an agent’s success may be
contingent on the supervisor not detecting that agent. To explore these settings,
we model the supervisor’s procedure for eliminating agents, and we introduce
a parameter to measure the supervisor’s elimination budget. We then define
the agents’ problem as maximizing the budget for which the remaining agents
complete the task with high probability.

A Supervisor Elimination Procedure. For a prior Pr(i is Deceptive) = pD,i,
the supervisor computes belief θi(ξi) = Pr(i is Not Deceptive|ξi) using

θi(ξi) = 1 − pD,i

pD,i + (1 − pD,i) (Pr(ξi|i is Not Deceptive)/Pr(ξi|i is Deceptive))
. (2)

As θi(ξi) increases, the supervisor is more sure agent i is not deceptive.
We define the supervisor’s procedure for eliminating agents as a subset selec-

tion problem with parameters based on θi(ξi). The expected utility of agent
i to the supervisor is Viθi(ξi), where Vi is a base utility. We then define the
supervisor’s budget for eliminating agents by an upper bound, C, on the total
utility the supervisor may eliminate. Under this constraint, the supervisor max-
imizes the probability that at least one of the agents eliminated is deceptive,
Pr(∃i ∈ T : i is Deceptive|ξi). Assuming the supervisor treats the agents as inde-
pendent, conditioned on paths, Pr(∃i ∈ T : i is Deceptive|ξi) = 1− ∏

i∈T θi(ξi).
Maximizing Pr(∃i ∈ T : i is Deceptive|ξi) is then equivalent to maximizing∑

i∈T − log(θi(ξi)), and the supervisor’s elimination problem is

max
T

∑

i∈T

− log(θi(ξi)) subject to
∑

i∈T

θi(ξi)Vi ≤ C. (3)

We denote the solution of (3) by T = f(θi(ξi), C). The supervisor computes T
once after observing mr paths for the agents.

We remark that the independence assumptions affect the form of (3). The
conditional independence assumption applies when the supervisor treats the
agents’ deceptiveness as independent, for example, when the deceptive agents,
1, . . . , n, are a subset of a larger agent pool that the supervisor observes.

Deceptive Policy Synthesis with Elimination. We define the agents’ prob-
lem as synthesizing policies that maximize the value of C, such that the remain-
ing agents, [n] \ f(θi(ξi), C), complete the task with high probability.

Policies alone do not determine the subset T , as elimination depends on the
state sequence produced during execution. As such, we define a belief proxy

θ̂i(π) = 1 − pD,i

pD,i + (1 − pD,i)e
−mr·KL

(
Γ π||Γ πS

i

) . (4)
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Because of the relationship,

mr · KL
(
Γπ||ΓπS )

= E
[
log(Pr(ξ|π)) − log(Pr(ξ|πS))

]
,

the belief proxy has the same form as the expectation E[θi(ξi)], with the expec-
tation operator moved to the exponent in the denominator.

Using this proxy, we formulate the agents’ problem as

Problem 2 (Elimination-Aware Deceptive Policy Synthesis). Given MDP Mi,
reference policy πS

i , set RA
i , prior pD,i ∈ (0, 1), and base utility Vi ≥ 0 for each

agent i ∈ [n], as well as threshold νA ≥ 0, and number of paths mr ∈ N, solve

sup
(πA

1 ,...,πA
n )∈Π (Mi),C,T

C (5a)

subject to T = f(θ̂i(πA
i ), C), (5b)

Pr(∃i ∈ [n] \ T : si
0 |= ♦RA

i ) ≥ νA. (5c)

For V1 = . . . = Vn, and fixed policies πA
i , the supremum of the set of feasible

values of C is the smallest amount of utility the supervisor must sacrifice such
that the remaining agents no longer satisfy the reachability constraint.

Running Example (Continued). Consider policies formulated for Problem 1
such that constraint (1b) is tight. If θ̂i(πA

i ) = y, and Vi = 1, for all i ∈ [n], then
for C = y, these policies are no longer feasible, as when the supervisor eliminates
either agent, the task is no longer achieved with high probability. Alternatively,
each agent may reach ∗ with probability νA at the cost of decreasing θ̂i(πA

i ). If
θ̂i(πA

i ) = z for all i ∈ [n], then the policies are feasible for any C < 2z, as the
supervisor must eliminate both agents to violate the reachability constraint.

4 Worst-Case Deceptive Policy Synthesis

We provide a scalable algorithm to solve Problem 1 to global optimality by
solving a sequence of convex optimization problems for each agent individually.

We first convert Problem 1 into a formulation based on occupancy measures
to facilitate the reachability constraint (1b). This conversion follows a similar
process to [18], which we detail in Sect. A.1 of the appendix. The reference policy
πS

i induces a set of transient states, Sd,i ⊆ Si, on which πA
i deviates from πS

i .
The states in Si \ Sd,i are closed, and the optimal deceptive policies do not
deviate from πS

i on Si \ Sd,i. We optimize occupancy measures for s ∈ Sd,i, and
the elements of vector xi are occupancy measures xsi,ai for the states si ∈ Sd,i.

We define the following functions to introduce the new formulation.

KL(xi, π
S
i ) =

∑

si∈Sd,i

∑

qi∈Succi(si)

xsi,qi log

(
xsi,qi

πS
si,qi

∑
ai′ ∈Ai(si) xsi,ai′

)

. (6)

F (xi, s
i) =

∑

ai∈Ai(si)

xsi,ai −
∑

qi∈Sd,i

xqi,si − 1lsi
0
(si). (7)
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ν(xi, Ri) =
∑

qi∈Ri

∑

si∈Sd,i

xsi,qi + 1lsi
0
(qi). (8)

The KL divergence between path distributions is (6), and (6) holds due to the
stationarity of the policies [18]. The net occupancy flow at state si is (7), and
the reachability probability for a set Ri is (8).

We reformulate Problem 1 as the following optimization problem, where the
decision variables are the agents’ individual occupancy measures.

inf
(xA

1 ,...,xA
n )

max
i∈[n]

KL(xA
i , πS

i ) (9a)

subject to F (xA
i , s) = 0, ∀s ∈ Sd,i,∀i ∈ [n], (9b)

n∏

i=1

(1 − ν(xA
i , RA

i )) ≤ 1 − νA, (9c)

xA
i ≥ 0, ∀i ∈ [n]. (9d)

Proposition 1 shows the existence of a solution and the equivalence of (9) to
Problem 1. We give the proof in Sect. A.1 of the appendix.

Proposition 1. Problem 1 and the optimization problem (9) share the same
optimal value, and there exist policies (πA

i )ni=1 that attain the optimal value.

We remark that (9c) is problematic as it induces non-convexity, and non-
convex optimization problems may have sub-optimal local minima. However,
Theorem 1 shows that non-convexity is not an issue for Problem 1.

Theorem 1. Every local minimum of (9) is a global minimum.

Theorem 1 holds as (9a) is the maximum of a finite set of convex functions, and
the disjunctive reachability probability is a coordinate-wise monotone function.
In fact, Theorem 1 and the following algorithm hold for any objective that is a
maximum of convex functions of individual occupancy measures. For example,
one may instead minimize the maximum required battery capacity for a fleet of
drones. We prove Theorem 1 in Sect. A.2 of the appendix.

Algorithm 1 uses the maximum structure of (9a) to solve (9) via a series of
reachability maximization problems. The reachability maximization problem for
agent i, given KL divergence bound K, reference policy πS

i , and set RA
i , is

sup
xA

i

ν(xA
i , RA

i ) (10a)

subject to KL(xA
i , πS

i ) ≤ K, (10b)

F (xA
i , si) = 0, ∀si ∈ Sd,i, (10c)

xA
i ≥ 0. (10d)

We denote by Reach(πS
i , RA

i ,K), the optimal value of (10), and we note that
(10) is a convex optimization problem due to results in [18]. Algorithm 1 finds
the minimum K such that the disjunctive reachability probability exceeds νA.
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Algorithm 1. Line search applied for deceptive policy synthesis
1: procedure DeceptiveSynthesis((πS

i , RA
i )ni=1, νA, Kmax, ε)

2: K ← Bisection(ReachEvaluate((πS
i , RA

i )ni=1, νA, ·),[0, Kmax],ε)
3: end procedure
4: procedure ReachEvaluate((πS

i , RA
i )ni=1, νA, K)

5: ν ← 1 − ∏n
i=1(1 − Reach(πS

i , RA
i , K))

6: return ν − νA
7: end procedure

Algorithm 1 finds the smallest zero crossing of ReachEvaluate. Bisection
successively computes intervals [K,K] containing K∗, which is the smallest
K such that ReachEvaluate((πS

i , RA
i )ni=1, νA,K) ≥ 0. We can then use the

final value of K with ReachEvaluate to compute feasible policies. Note that
Bisection should not terminate when ReachEvaluate is zero. Rather, we
should continue decreasing K to ensure we find K∗.

Algorithm 1 requires O(log2(Kmax/ε)) iterations each of which requires solv-
ing O(n) single-agent problems.

We next describe how to find Kmax, which upper-bounds the optimal value of
(9). For each i, construct a new MDP, M̂i, by removing actions that induce state
transitions (si, qi) with zero probability under πS

i . For each M̂i, find policies πA
i

that maximize νi = Pr(si
0 |= ♦RA

i ). If 1−∏n
i=1(1−νi) ≥ νA, then the maximum

KL divergence among the policies bounds K∗. If the inequality does not hold,
the agents must use state transitions with zero probability under πS

i .
As ReachEvaluate is monotonic in K, Algorithm 1 converges to the opti-

mal value of (9) for finite Kmax. We give a proof in Sect. A.2 of the appendix.

Theorem 2. The value K computed by Algorithm 1 satisfies K < K∗+ε, where
K∗ is the optimal solution of Problem 1.

4.1 On Reference Policy Synthesis

The supervisor may preempt deceptive policy synthesis by choosing reference
policies πS

i that maximize the optimal value of Problem 1. Denoting Problem 1’s
optimal value by g((πS

i )
n
i=1), the supervisor’s problem is

sup
(πS

1 ,...,πS
n )∈Π (Mi)

g((πS
i )

n
i=1) (11a)

subject to Pr(si
0 |= ♦RS

i ) ≥ νS,i, ∀i ∈ [n]. (11b)

In (11b), RS
i ⊆ Si is a task for each agent, and νS,i is a probability threshold.

While solving (11) in the single-agent case is NP-hard [18], [17] uses projected
gradient-descent as a heuristic. Extending this approach to multiple agents is
non-trivial. The disjunctive reachability constraint underlying g is non-convex,
and this non-convexity makes taking projections in the agents’ variables difficult.
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However, Algorithm 1 facilitates first-order methods for (11). The gradient
descent with max-oracle algorithm [23] may solve a max−min problem by taking
gradient steps in the outer variables and solving the inner problem at each itera-
tion. In (11), the inner problem is deceptive policy synthesis, which we solve with
Algorithm 1. Note that we must smooth maxi KL(xA

i , πS
i ) for differentiability.

5 Elimination-Aware Deceptive Policy Synthesis

We explore the synthesis of deceptive policies that ensure agents complete the
reachability task, even when the supervisor eliminates some agents. We discuss
the complexity of the supervisor’s subset selection problem, as it appears in this
synthesis problem, and we give restrictions that ease policy synthesis. We then
extend the methods for worst-case deceptive policy synthesis, to solve Problem 2.

5.1 Discussion of Supervisor’s Elimination Procedure

The supervisor’s elimination procedure appears to lack sufficient structure to
facilitate an efficient algorithm for deceptive policy synthesis. A tuple of weights,
(wi)ni=1, and profits, (pi)ni=1, define a knapsack problem

max
T⊆[n]

∑

i∈T

pi subject to
∑

i∈T

wi ≤ C, (12a)

and the elimination procedure, (3), is an example with pi = − log(θi(ξi)), and
wi = θi(ξi)Vi. Proposition 2 indicates that the supervisor’s elimination proce-
dure is too general to permit an efficient algorithm for deceptive policy synthesis,
as instances of the elimination procedure cover real-valued knapsack problems.

Proposition 2. Let (wi)ni=1 and (pi)ni=1 be given arbitrary tuples of positive
real weights and profits defining a knapsack problem. Then, there exists a tuple,
(πS

i , πA
i ,Mi, ξi, Vi, pD,i)ni=1, of reference policies, agent policies, MDPs, state

paths, base utilities, and priors, such that wi = θi(ξi)Vi and pi = − log(θi(ξi)).

Proof. Consider an MDP with S = {o, a, b}, A = {1, 2}, and s0 = o. States a
and b are absorbing, and P (o, 1, a) = P (o, 2, b) = 1. For all i, Mi = (S,A, P, s0).
For all i, fix paths as ξi = (0, a, a, a, . . .), and set pD,i = κ ∈ (0, 1). Note that
mr = 1. We now design policies πA

i and πS
i . Likelihood ratios are given by

Pr(ξi|i is Not Deceptive)
Pr(ξi|i is Deceptive)

=
πS

i (o, 1)
πA

i (o, 1)
, (13)

and we set πS
i (o,1)/πA

i (o,1) = e−pi κ/((1−e−pi )(1−κ)) so that

θi(ξi) = 1 − κ

κ + (1 − κ)
(
πS

i (o,1)/πA
i (o,1)

) = exp(−pi). (14)

As Vi is free, and θi(ξi) > 0, we set Vi such that wi = θi(ξi)Vi. �
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In Problem 2, the function f , which represents the supervisor’s procedure for
eliminating agents, takes belief proxies θ̂ as input, rather than true beliefs θ.
However, we may prove Proposition 2 for θ̂ as well. We simply control e−KLi

instead of πS
i (o,1)/πA

i (o,1). It is easy to modify the policy pairs to set KLi to any
value in [0,∞), and e−KLi to any value on (0, 1]. We then need to choose κ small
enough so that e−pi κ/((1−e−pi )(1−κ)) ∈ (0, 1) for all i ∈ [n].

Problem 2 is also a bi-level knapsack problem, with the agents as the leader
and the supervisor as the follower, and the complexity of bi-level knapsack prob-
lems [31,32] reinforces the difficulty of Problem 2. For example, if a leader con-
trols weights in a knapsack problem solved by a follower, and the leader gets
rewards based on the items selected, the problem of finding the optimal weights
is not approximable [31]. While Problem 2 is distinct in form from problems
explored in [31,32], the hardness results further suggest the difficulty of Prob-
lem 2.

We restrict Problem 2 such that V1 = . . . = Vn = 1, leading to a simple
solution for the supervisor’s problem. With this restriction, the supervisor solves

max
T

∑

i∈T

− log(θi(ξi)) subject to
∑

i∈T

θi(ξi) ≤ C, (15)

to find a subset T of agents to eliminate, and we may construct the solution by
adding agents to T in increasing order of θi(ξi) until we violate the constraint in
(15). The interpretation of Vi = Vj is that agents i and j have the same expected
utility to the supervisor if i and j are equally believed to be non-deceptive. If
Vi > Vj , the supervisor may prefer to eliminate agent j even if θi(ξi) < θi(ξj).

5.2 Synthesis of Optimal Deceptive Policies Under Elimination

We reformulate Problem 2 (elimination-aware deceptive policy synthesis) to
apply the methods used for Problem 1.

We first replace f , which defines the eliminated agents, with constraints
defining the optimal subset T . This replacement yields the optimization problem

max
(πA

1 ,...,πA
n )∈Π (Mi),T,C

C (16a)

subject to θ̂i(πA
i ) < θ̂j(πA

j ), ∀i ∈ T,∀j ∈ [n] \ T, (16b)
∑

i∈T

θ̂i(πA
i ) ≤ C, (16c)

∑

i∈T

θ̂i(πA
i ) + θ̂j(πA

j ) > C, ∀j ∈ [n] \ T, (16d)

Pr(∃i ∈ [n] \ T : si
0 |= ♦RA

i ) ≥ νA. (16e)

As V1 = . . . = Vn, the set T contains the |T | agents with the lowest values of θ̂,
and constraint (16b) encodes this fact. Constraint (16c) then enforces the knap-
sack constraint from (15). Finally, constraint (16d) ensures that T is optimal, as
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if we add any agent to T , then we violate the constraint in (15). We note that
(16b) restricts the set of feasible policies such that the agents in T and [n] \ T
may not have the same value of θ̂.

We may manipulate θ̂ to force the elimination of certain decoy agents first,
and we simplify (16) by considering this interpretation of T as containing decoys.
For fixed T and πA

i , C =
∑

i∈T θ̂i(πA
i )+mini∈[n]\T θ̂i(πA

i )− δ is optimal, where
we add δ ≈ 0 due to the strict inequality in (16d). This value of C corresponds to
the supervisor eliminating all decoy agents i ∈ T and almost having the budget
to eliminate the non-decoy agent with the lowest belief, mini∈[n]\T θ̂i(πA

i ). The
decoys should also have maximum expected utility to the supervisor, subject
to the constraint that their expected utility is lower than that of the non-decoy
agents. As V1 = . . . = Vn, we may set πA

i such that θ̂i(πA
i )= γ minj∈[n]\T θ̂j(πA

j )
for all i ∈ T . The scalar γ ∈ (0, 1) accounts for the strict inequality in (16b).

Applying these equalities gives the optimization problem

max
(πA

1 ,...,πA
n )∈Π (Mi),T,M

|T |(M · γ) + M − δ (17a)

subject to Pr(∃i ∈ [n] \ T : si
0 |= ♦RA

i ) ≥ νA, (17b)

θ̂i(πA
i ) ≥ M, ∀i ∈ [n] \ T, (17c)

θ̂i(πA
i ) = M · γ, ∀i ∈ T. (17d)

To solve (17), we sweep the size of T , and for each |T | = k, we optimize the
decoy assignment and agent policies to maximize mini∈[n]\T θ̂i(πA

i ).
For fixed |T |, we reformulate (17) by substituting KL divergence for belief

proxies so that we may apply a similar line search procedure to Algorithm 1.
Assuming pD,1 = . . . = pD,n, rearranging the definition of the belief proxy yields

θ̂i(πA
i ) > θ̂j(πA

j ) if and only if KL
(
ΓπA

i ||ΓπS
i

)
< KL

(
ΓπA

j ||ΓπS
j

)
. (18)

As such, we may equivalently minimize the maximum KL divergence among the
n − k agents in [n] \ T , which yields

min
(πA

1 ,...,πA
n )∈Π (Mi),T

max
i∈[n]\T

KL
(
ΓπA

i ||ΓπS
i

)
(19a)

subject to KL
(
ΓπA

i ||ΓπS
i

)
= K · γ′, ∀i ∈ T, (19b)

Pr(∃i ∈ [n] \ T : si
0 |= ♦RA

i ) ≥ νA, (19c)
|T | = k. (19d)

We replace tolerances γ in θ̂i(πA
i ) with tolerances in KL divergence γ′ ∈ (1,∞).

Tuning γ′ controls how much more decoys deviate compared to non-decoys. We
remark that while the non-linear equality constraint (19b) appears difficult to
satisfy, we can find the required policy with convex combinations in the policy
space between πS

i and a policy πi with KL divergence greater than K · γ′.
Algorithm 2 combines a modified version of the line search procedure

from Algorithm 1 with a sweep across subset sizes to solve (19). We modify
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ReachEvaluate by computing the disjunctive reachability using the n − k
agents that have maximum reachability probability. These n−k agents are non-
decoy agents.

Algorithm 2. Elimination-aware deceptive policy synthesis
1: procedure DeceptiveSubsetSelection((πS

i , RA
i )ni=1, νA,Kmax,ε,p,γ′,mr)

2: for k = 0, . . . , n − 1 do
3: Bk ← 0 � Assume initially that k decoys are not feasible
4: K, Failk ← SubsetSearch((πS

i , ♦RA
i )ni=1, νA,Kmax,ε, n − k)

5: if ¬Failk then
6: M ′ ← 1 − p

p+(1−p)e−mrKγ′ , M ← 1 − p
p+(1−p)e−mrK , Bk ← k · M ′ + M

7: end if
8: end for
9: k∗ ← argmaxBk

10: end procedure
11: procedure SubsetSearch((πS

i , RA
i )ni=1, νA, Kmax,ε, w)

12: K ← Bisection(ReachEvaluateSub((πS
i , RA

i )ni=1, νA,·,w),[0, Kmax])
13: ν − νA ← ReachEvaluateSub((πS

i , RA
i )ni=1, νA,K,w)

14: return K, (ν − νA < 0) � Validate whether the final policy satisfies reach.
15: end procedure
16: procedure ReachEvaluateSub((πS

i , RA
i )ni=1, νA,K,w)

17: νi ← Reach(πS
i , RA

i , K), ∀i ∈ [n]
18: N ← BestKElements(w, {νi}) � Get indices of w highest νi values
19: ν ← 1 − ∏

i∈N (1 − νi)
20: return ν − νA
21: end procedure

We again give a method to set Kmax. Compute K ′
max using the process given

in Sect. 4 for Algorithm 1, and compute B0 using K = K ′
max in Line 6. This

B0 value lower-bounds the optimal value of (17). Then, compute Kmax as the
value such that, using K = Kmax in Line 6, Bn−1 = B0. For |T | = n − 1, if the
non-decoy agents have KL divergence above Kmax, the solution is worse than the
solution for |T | = 0 with KL divergence of K ′

max. In fact, for any k, the solution
is sub-optimal if the non-decoy agents’ KL divergence exceeds Kmax. The Failk
flag is set if no solution exists with KL divergence below Kmax for |T | = k.

We also assume that, for all i ∈ [n], we may synthesize policies π∗
i with

KL divergence value higher than the optimal value of (19), but we can also use
Algorithm 2 without this assumption. We need this assumption so that any agent
i may be a decoy. Without this assumption, we modify Line 18. If K is above
the maximum KL divergence that agent i may attain, then i can not be a decoy,
and we include i in N before adding agents to N based on their reachability.

6 Numerical Results

We illustrate deceptive policy synthesis in a delivery example, where weather-
induced stochasticity provides plausible deniability for deceptive agents. A super-
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Fig. 3. Package delivery example policies. The left color of node v is the occupancy
measure of state (v, 0). The right color of a node v is the occupancy flow into state (v, 1),
which is equal to Pr(si0 |= ♦{(v, 1)}). Nodes with green, red, and orange borders are
supervisor target nodes, agent target nodes, and initial states, respectively. (a) and (d)
are reference policies. (b) and (e) are deceptive policies for no decoys, and are policies
synthesized by Algorithm 1. (c) and (f) show policies synthesized by Algorithm 2 for
one decoy agent with γ′ = 1.2.

visor specifies πS
i for n drones so that each drone delivers a package to some tar-

get. However, an external intruder with access to the drones must ensure that,
with high probability, at least one drone delivers a package to their location.

We define the drones’ MDPs and targets via an undirected graph G = (V,E),
where V contains regions, and E contains connections between regions. The state
space is V × {0, 1}, where a drone in state (v, 0) is in flight in v, and a drone
in state (v, 1) has landed in v. Given N ⊆ V , the agents’ target states, for each
i ∈ [n], are RA

i = {(v, 1)|v ∈ N}. For each i ∈ [n], the supervisor’s target state
is (ni, 1) for some ni ∈ V . All landed states are absorbing.

The actions available to a drone at state (v, 0) are moving on the graph
or landing. If a drone uses action au, for node u adjacent to v, the drone will
transition to (u, 0) with probability ptarget. However, due to weather, the drone
may transition to (v, 1) with probability pland, or to an adjacent flight node
w = u, with probability (1−pland−ptarget)/(|adj(v)|−1). The set of nodes adjacent
to v is adj(v). When the drone takes a landing action at state (v, 0), the drone
will transition to (v, 1) with probability ptarget + pland and will transition to an
adjacent flight state (u, 0) with probability (1−ptarget−pland)/|adj(v)|.

We specify reference policies such that the agent i moves along the shortest
path in the graph G toward the target node ni.

6.1 Worst-Case Deceptive Policy Synthesis and Reference Policy
Synthesis

The first two columns of Fig. 3 show worst-case deceptive policy synthesis for
n = 2 and νA = 0.6, and we observe that the relative reachability probabilities
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Fig. 4. Synthesis of reference policies using
gradient-ascent with max oracle with Algo-
rithm 1 used to solve the inner problem.

Fig. 5. Values of Bk with n = 8.

for the agents match how suited their reference policies are to the task. Under
πS

2 , agent 2 already reaches N × {1} with probability 0.09, as opposed to 0.009
for agent 1, and so agent 2 needs to deviate less to achieve higher reachability
for the same KL divergence budget. As such, under deceptive policies, agents 1
and 2 reach the target states with probabilities 0.23, and 0.48, respectively.

Figure 4 shows the reference policies we obtain by using Algorithm 1 as a
subroutine in the gradient ascent with max-oracle algorithm [23]. As expected,
this approach creates reference policies that avoid the agents’ target states.

6.2 Elimination-Aware Deceptive Policy Synthesis

Figures 3c and 3f show deceptive policies synthesized with one decoy, and we
see that Algorithm 2 allocates agent 1 as the decoy as agent 1 is less capable of
completing the task under πS

1 .
We also consider an instance of the package delivery example with n = 8 to

demonstrate the trade-off between redundancy and detectability that arises when
using decoys. In this example, the supervisor assigns πS

1 in Fig. 3 to four agents
and πS

2 to the other agents. We show the results in Fig. 5. With no decoys, each
agent needs a small reachability probability and has a low KL divergence, but the
supervisor only needs to eliminate one agent for the reachability probability to
drop below 0.6. Meanwhile, with seven decoys, all agents have large deviations,
so the supervisor sacrifices little utility by eliminating all of the agents. A mix of
decoy and non-decoy agents maximizes the utility the supervisor must sacrifice
so that the remaining agents complete the task with a probability below 0.6.

7 Conclusion

Building secure multi-agent systems requires system designers to consider team
deception. We explored the synthesis of deceptive policies for agents who deceive
their supervisor by deviating from assigned reference behavior. We formulated
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the agents’ problem as finding decentralized policies that minimize the KL diver-
gence between the agents’ behavior and the reference while ensuring that, with
high probability, at least one agent reaches a target. While the formulation led to
a non-convex optimization problem, we provided a scalable method to synthesize
optimal policies. We then demonstrated how a supervisor may use this method
to improve the security of reference policies. We also analyzed an extension of
the problem where agents synthesize policies to ensure that after the supervisor
eliminates some agents, the remaining agents complete the task. This problem
is difficult as the agents must reason about the subset selection procedure the
supervisor uses to eliminate agents. However, we explored a restriction to make
the problem tractable and gave an algorithm for choosing deceptive policies that
control the order in which the supervisor eliminates agents.

In this work, we explored disjunctive reachability, and we minimized the
maximum deviation among the agents. Future work will explore different cou-
plings of the agents through their objectives and different measures of the team’s
detectability.
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A Appendix

A.1 Sufficiency of Occupancy Measure Formulation

We show the sufficiency of occupancy measure-based formulations for Problem 1,
following [18]. We require finiteness of the optimal value of Problem 1 for the
following results, but we may check this finiteness by finding Kmax with the
method we describe in Sect. 4.

We first recall the state-space decomposition from [18]. Let Ccl
i be the union

of the closed communicating classes of the Markov chain induced by (Mi, π
S
i ).

With one agent, the agent should follow πS
i for all s ∈ Ccl

i so that the policy
does not have infinite KL divergence [18]. The agent should also follow πS

i on
RA

i . These properties hold for Problem 1 as well, and set Sd,i = Si \ (Ccl
i ∪ RA

i )
contains states on which we modify πA

i from πS
i .

We now restate a result from [18] on the finiteness of occupancy measure.
Let Problem 1a be the case of Problem 1 with a single-agent.

Proposition 3 [18]. If Problem 1a has finite optimal value, with optimal policy
πA, the state-action occupancy measure xs,a is finite for all s ∈ Sd and a ∈ A(s).

This result extends to Problem 1. Let Problem 1 have finite optimal value, with
optimal policies πA

i , and define νi as Pr(si
0 |= ♦RA

i ) under πA
i . Define P1i as



194 C. Probine et al.

the single-agent problem of minimizing the KL divergence of i with probability
threshold ν′

A = νi. By construction, πA
i is feasible for P1i, and its KL divergence

is finite. Proposition 3 then implies that solution πA∗
i to P1i has finite occupancy

measure on Sd,i. As πA∗
i is optimal, it also has lower KL divergence than πA

i .
As such, for each agent i ∈ [n], we replace πA

i with πA∗
i , to construct an optimal

solution to Problem 1 comprised of policies with finite occupancy measure.
The following result also trivially extends to the problem we explore due to

the decentralized approach we take.

Proposition 4 [18]. For any policy πA that satisfies Pr(s0 |= RA) ≥ νA, there
exists a stationary policy πA,St ∈ Π(M) that satisfies Pr(s0 |= RA) ≥ νA and

KL
(
ΓπA,St ||ΓπS )

≤ KL
(
ΓπA ||ΓπS )

. (20)

Proof of Proposition 1. This proposition follows from the proof of the equivalence
of Problem 1 and (9) in the single-agent case, given in [18].

The extensions of Propositions 3 and 4 to multiple agents justify the restric-
tion to stationary policies with finite occupancy measures for Problem 1.

Regarding the existence of a policy that attains the optimal value of (9), the
only comment that needs to be made to extend the proof in [18], is that the
objective maxi∈[n] KL(xi, π

S
i ) remains continuous in xi. �

A.2 Optimality and Algorithms for Problem 1

Proof of Theorem 1. We show that any strictly sub-optimal point is not a local
minimum. Let (xi)ni=1 be strictly sub-optimal, and let (x∗

i )
n
i=1 be globally opti-

mal. Let νi = ν(xi, R
A
i ), ν∗

i = ν(x∗
i , R

A
i ), and Ki(x) = KL(x, πS

i ).

Case 1. Assume constraint (9c) is not tight. Define new occupancy measures
through the convex combination x′

i = xi + θ(x∗
i − xi) for all i ∈ [n]. Constraints

(9b) and (9d) define convex sets, and so they will hold for x′
i. The left hand side

of (9c) is continuous in x, and constraint (9c) is not tight, so for sufficiently small
θ > 0 we have

∏n
i=1(1 − ν(x′

i, R
A
i )) ≤ 1 − νA. Also, as (xi)ni=1 is strictly sub-

optimal, we have that maxi Ki(xi) > maxi Ki(x∗
i ), and hence maxi Ki(xi) >

maxi Ki(x′
i) for θ > 0. By the above observations, we may generate feasible

(x′
i)

n
i=1 arbitrarily close to (xi)ni=1 with strictly lower objective value, which

demonstrates that (xi)ni=1 cannot be a local minimum.

Case 2. Now, allow constraint (9c) to hold with equality such that
∏n

i=1(1−νi) =
1−νA. As (x∗

i )
n
i=1 is feasible we have

∏n
i=1(1−νi) ≥ ∏n

i=1(1−ν∗
i ). If νi = ν∗

i for
all i ∈ [n], then convex combinations of (xi)ni=1 and (x∗

i )
n
i=1 remain feasible, and

by the arguments of Case 1, (xi)ni=1 is strictly sub-optimal. If there exists i ∈ [n]
such that νi = ν∗

i , then there exists j such that νj < ν∗
j . In this case, we first

construct intermediate occupancy measures by defining x′
j = θxj +(1− θ)x∗

j for
some θ > 0, and x′

i = xi for all i = j. By convexity of KL in the occupancy
measure, we then have that Kj(x′

j) ≤ max(Kj(xj),Kj(x∗
j )) ≤ maxi Ki(xi) and

as such, maxi Ki(x′
i) ≤ maxi Ki(xi). For θ > 0, this construction produces
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point x′ that satisfies reachability strictly. We can then appeal to Case 1 to
produce point x′′ close to x′ with a strictly lower value of the objective function.
Point x′ can also be made arbitrarily close to x. As such, we may make point
x′′, satisfying maxi Ki(x′′

i ) < maxi Ki(x′
i) ≤ maxi Ki(xi), arbitrarily close to

x, which implies that x cannot be a local minimum. �
Proof of Theorem 2. Let νΔ(K) = ReachEvaluate((πS

i , RA
i )ni=1, νA,K). We

first note that K1 < K2 implies Reach(πS
i , RA

i ,K1) ≤ Reach(πS
i , RA

i ,K2) for
all i ∈ [n], which implies νΔ is increasing. This inequality holds as the latter
Reach problem is a relaxation of the former for all i ∈ [n].

We now discuss the initial values of K and K, which are Kmax and 0 respec-
tively. As Kmax is a bound on the optimal value, νΔ(Kmax) ≥ 0. If νΔ(0) ≥ 0,
it is optimal to use πA

i = πS
i for all i. As such, we may assume νΔ(0) < 0.

Consider the final values Kt and Kt. At each bisection iteration we compute
K = (K + K)/2. If νΔ(K) < 0, we then set K = K, or if νΔ(K) ≥ 0, we set
K = K. By the Bisection definition, and the fact that νΔ(0) < 0, we have
νΔ(Kt) < 0. Using monotonicity of νΔ, we then conclude that there do not exist
feasible policies that satisfy maxi KL(xi, π

S
i ) < Kt, and so, K∗ ≥ Kt. Again, by

the Bisection definition and the fact that νΔ(Kmax) ≥ 0, we have νΔ(Kt) ≥ 0
and we may observe that K∗ ≤ Kt. At termination, we have Kt ≤ Kt + ε, as ε
is the tolerance. We finally conclude K∗ ≤ Kt ≤ Kt + ε ≤ K∗ + ε. �

References

1. Aitchison, M., Benke, L., Sweetser, P.: Learning to deceive in multi-agent hidden
role games. In: Sarkadi, S., Wright, B., Masters, P., McBurney, P. (eds.) DeceptE-
CAI/DeceptAI 2020-2021. CCIS, vol. 1296, pp. 55–75. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-91779-1_5

2. Bähnemann, R., Schindler, D., Kamel, M., Siegwart, R., Nieto, J.: A decentralized
multi-agent unmanned aerial system to search, pick up, and relocate objects. In:
IEEE International Symposium on Safety, Security and Rescue Robotics, pp. 123–
128 (2017)

3. Bai, C.Z., Pasqualetti, F., Gupta, V.: Data-injection attacks in stochastic control
systems: detectability and performance tradeoffs. Automatica 82, 251–260 (2017)

4. Becker, R., Zilberstein, S., Lesser, V., Goldman, C.V.: Solving transition indepen-
dent decentralized Markov decision processes. J. Artif. Intell. Res. 22, 423–455
(2004)

5. Bernstein, D.S., Givan, R., Immerman, N., Zilberstein, S.: The complexity of decen-
tralized control of Markov decision processes. Math. Oper. Res. 27(4), 819–840
(2002)

6. Carminati, L., Zhang, B.H., Farina, G., Gatti, N., Sandholm, T.: Hidden-role
games: equilibrium concepts and computation. arXiv preprint arXiv:2308.16017
(2023)

7. Chen, S., Savas, Y., Karabag, M.O., Sadler, B.M., Topcu, U.: Deceptive planning
for resource allocation. In: American Control Conference (2024)

8. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, Hoboken
(1999)

https://doi.org/10.1007/978-3-030-91779-1_5
http://arxiv.org/abs/2308.16017


196 C. Probine et al.

9. Dragan, A., Holladay, R., Srinivasa, S.: An analysis of deceptive robot motion. In:
Robotics: Science and Systems (2014)

10. Fatemi, M.Y., Suttle, W.A., Sadler, B.M.: Deceptive path planning via rein-
forcement learning with graph neural networks. In: International Conference on
Autonomous Agents and Multi-agent Systems pp. 2258–2260 (2024)

11. Fu, J.: On almost-sure intention deception planning that exploits imperfect
observers. In: Fang, F., Xu, H., Hayel, Y. (eds.) GameSec 2022. LNCS, vol. 13727,
pp. 67–86. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-26369-9_4

12. Ghiya, S., Sycara, K.: Learning complex multi-agent policies in presence of an
adversary. In: IROS Workshop on Trends and Advances in Machine Learning and
Automated Reasoning for Intelligent Robots and Systems (2020). https://doi.org/
10.48550/arXiv.2008.07698

13. Han, X., Kheir, N., Balzarotti, D.: Deception techniques in computer security: a
research perspective. ACM Comput. Surv. 51(4), 80:1–80:36 (2018)

14. He, Z., Yuan, J., Ran, N., Yin, X.: Security-based path planning of multi-robot
systems by partially observed Petri nets and integer linear programming. IEEE
Control Syst. Lett. 8, 352–357 (2024)

15. Janczewski, L.J., Colarik, A.M.: Cyber Warfare and Cyber Terrorism. IGI Global
(2008)

16. Kanellopoulos, A., Vamvoudakis, K.G.: Bounded rationality in Byzantine sensors
under attacks. IEEE Trans. Autom. Control 67(7), 3606–3613 (2022)

17. Karabag, M.O.: Decision-making for autonomous agents in adversarial or
information-scarce settings. Ph.D. thesis, The University of Texas at Austin (2023)

18. Karabag, M.O., Ornik, M., Topcu, U.: Deception in supervisory control. IEEE
Trans. Autom. Control 67(2), 738–753 (2022)

19. Karabag, M.O., Ornik, M., Topcu, U.: Exploiting partial observability for optimal
deception. IEEE Trans. Autom. Control 68(7), 4443–4450 (2023)

20. Karabag, M.O., Ornik, M., Topcu, U.: Identity concealment games: how I learned
to stop revealing and love the coincidences. Automatica 161, 111482 (2024)

21. Keroglou, C., Hadjicostis, C.N.: Probabilistic system opacity in discrete event sys-
tems. Discrete Event Dyn. Syst. 28, 289–314 (2018)

22. Khazraei, A., Pajic, M.: Resiliency of nonlinear control systems to stealthy sensor
attacks. In: IEEE Conference on Decision and Control, pp. 7109–7114 (2022)

23. Lin, T., Jin, C., Jordan, M.I.: On gradient descent ascent for nonconvex-concave
minimax problems. In: International Conference on Machine Learning, pp. 6083–
6093 (2020)

24. Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., Mordatch, I.: Multi-agent actor-
critic for mixed cooperative-competitive environments. Adv. Neural. Inf. Process.
Syst. 30, 6379–6390 (2017)

25. Ma, H., Shi, C., Han, S., Dorothy, M.R., Fu, J.: Covert planning against imperfect
observers. In: International Conference on Autonomous Agents and Multi-agent
Systems, pp. 1319–1327 (2024)

26. Masters, P., Sardina, S.: Deceptive path-planning. In: International Joint Confer-
ence on Artificial Intelligence, pp. 4368–4375 (2017)

27. Mu, C., Pang, J.: On quantified observability analysis in multiagent systems. In:
European Conference on Artificial Intelligence, vol. 372, pp. 1755–1762 (2023)

28. de Nijs, F., Walraven, E., de Weerdt, M.M., Spaan, M.T.J.: Constrained multiagent
Markov decision processes: a taxonomy of problems and algorithms. J. Artif. Intell.
Res. 70, 955–1001 (2021)

https://doi.org/10.1007/978-3-031-26369-9_4
https://doi.org/10.48550/arXiv.2008.07698
https://doi.org/10.48550/arXiv.2008.07698


A Decentralized Shotgun Approach for Team Deception 197

29. Patil, A., Karabag, M.O., Tanaka, T., Topcu, U.: Simulator-driven deceptive con-
trol via path integral approach. In: IEEE Conference on Decision and Control, pp.
271–277 (2023)

30. Pettinati, M.J., Arkin, R.C., Krishnan, A.: Wolves in sheep’s clothing: using shill
agents to misdirect multi-robot teams. In: Sarkadi, S., Wright, B., Masters, P.,
McBurney, P. (eds.) DeceptECAI/DeceptAI 2020-2021. CCIS, vol. 1296, pp. 41–
54. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91779-1_4

31. Pferschy, U., Nicosia, G., Pacifici, A.: A Stackelberg knapsack game with weight
control. Theoret. Comput. Sci. 799, 149–159 (2019)

32. Pferschy, U., Nicosia, G., Pacifici, A., Schauer, J.: On the Stackelberg knapsack
game. Eur. J. Oper. Res. 291(1), 18–31 (2021)

33. Serrino, J., Kleiman-Weiner, M., Parkes, D.C., Tenenbaum, J.: Finding friend and
foe in multi-agent games. Adv. Neural. Inf. Process. Syst. 32, 1251–1261 (2019)

34. Shi, W., He, Z., Ma, Z., Ran, N., Yin, X.: Security-preserving multi-robot path
planning for Boolean specification tasks using labeled Petri nets. IEEE Control
Syst. Lett. 7, 2017–2022 (2023)

35. Strouse, D., Kleiman-Weiner, M., Tenenbaum, J., Botvinick, M., Schwab, D.:
Learning to share and hide intentions using information regularization. Adv. Neu-
ral. Inf. Process. Syst. 10249–10259 (2018)

36. Undurti, A., How, J.P.: A decentralized approach to multi-agent planning in the
presence of constraints and uncertainty. In: IEEE International Conference on
Robotics and Automation, pp. 2534–2539 (2011)

37. Yu, D., Tyshchuk, Y., Ji, H., Wallace, W.: Detecting deceptive groups using con-
versations and network analysis. In: International Joint Conference on Natural
Language Processing, pp. 857–866 (2015)

38. Yu, X., Yin, X., Li, S., Li, Z.: Security-preserving multi-agent coordination for
complex temporal logic tasks. Control Engi. Pract. 123(105130) (2022)

https://doi.org/10.1007/978-3-030-91779-1_4


Network and Privacy



Extended Horizons: Multi-hop Awareness
in Network Games

Raman Ebrahimi(B) and Parinaz Naghizadeh

University of California, San Diego, La Jolla, CA 92093, USA
{raman,parinaz}@ucsd.edu

Abstract. Network/interdependent security games have been exten-
sively used in the literature to gain insights into how firms make opti-
mal security decisions when accounting for spillovers of risks from other
firms with whom they have risk interdependencies. We extend these mod-
els by proposing K-hop network (security) games, in which agents have
extended awareness of network effects: an agent in a K-hop network
game accounts for not only its immediate neighbors (those with whom
it directly has joint operations or shared infrastructure), but also the
spillover of the (security) risks from agents up to K-hops away from
it. We first establish an equivalence between our proposed K-hop net-
work games and a one-hop game played on an appropriately defined
adjacency matrix. Then, through analytical results and numerical exam-
ples, we illustrate how subtle changes in a network can significantly alter
equilibrium behaviors when accounting for multi-hop risk spillovers,
emphasizing the dependency of agents’ efforts on the nature of their
dependencies (complement vs. substitute nature of efforts), agents’ dif-
ferent levels K of awareness of the network effects, and the reactive vs.
passive nature of lower awareness (lower K) agents to those with higher
awareness (higher K). Our findings show that extended awareness of net-
work effects can, in general, benefit agents by allowing them to optimize
their security planning and resource allocation, but that decision makers
who are less sophisticated and lack this awareness can suffer, and that
consequently, overall investment levels in security may deteriorate.

Keywords: Network Games · Interdependent Security Games ·
Strategic Awareness

1 Introduction

The study of strategic interactions in networked environments has received sig-
nificant attention in the literature on game theory and its applications to cyber-
security; see [5,13,18] for surveys. In this context, network (security) games
(also known as interdependent security games) are often used to model scenarios
where each node represents a strategic decision-maker or firm, and each con-
nection signifies an interdependence in the firms’ security state or operations.
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Traditionally, these models are used to gain (qualitative) insight into the strate-
gic security investments of decision-makers who consider how the actions of their
immediate (one-hop) neighbors could expose them to spillover security risks (e.g.,
[7,9,10,17,25,34]). These studies can inform us about the extent of free-riding
of agents on each other’s effort due to network effects, its impact on equilibrium
suboptimality (in terms of social welfare or other notions of cumulative security
costs), and potential interventions to alleviate it.

As cyber-physical systems become more complex and interconnected, it is
crucial for decision makers to better understand how their interdependence on
others should shape their organization’s security budgeting and investments,
and to do so beyond their immediate neighbors. The 2021 Kaseya Attack [21,23]
illustrates this clearly. Attackers initially compromised Kaseya’s VSA software,
then used it to distribute ransomware to Managed Service Providers (MSPs)
and their clients. This attack affected over 1,500 organizations, including schools,
supermarkets, and a national railway. The disruption to the railway, for example,
potentially impacted other businesses reliant on its services, highlighting the
far-reaching (multi-hop) effects of one firm’s security decisions on other firms in
the system. Similarly, the 2021 Colonial Pipeline attack [2] exhibits multi-hop
risk dependencies: the ransomware attack led to a shutdown of the pipeline,
causing fuel shortages and rising prices. This affected not just consumers but
also businesses dependent on fuel, such as airlines and logistics companies. A
formal model of network games in which agents are aware of, and best-respond
to, the efforts of not only their immediate neighbors, but also of agents multiple
hops away, has potential to capture such events, and offer richer insights into
strategic behavior and potential security interventions.

Motivated by this, in this paper, we extend the framework of network (secu-
rity) games considered in prior work (e.g., [3,6,11,16,19,20,32]) to encompass
the influence of multi-hop neighbors. These neighbors can be in the same net-
work or can be neighbors in a multiplex network. By incorporating awareness
of multi-hop security dependencies, we aim to provide a more comprehensive
understanding of how strategic influences propagate through the network and
affect agents’ decisions to free-ride on others (and potentially underinvest in
security which is a public good).

Formally, we propose a model of K-hop network (security) games, in which
agents have extended awareness of network effects: an agent in a K-hop network
game considers, or is aware of, the spillover of the (security) efforts of agents up
to K-hops away from it when selecting its own effort. We then explore the impli-
cations of such extended awareness on agents’ strategic security decision making
by looking into the Nash equilibria that arise as agents’ awareness of the network
(the K in the K-hop game) increases. We begin by using illustrative examples
to show that these changes are impacted by three factors: (1) the nature of the
agents’ dependencies (complement vs. substitute nature of efforts), (2) agents’
different levels K of awareness of the network effects, and (3) the reactive vs. pas-
sive nature of lower awareness (lower K) agents to those with higher awareness
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(higher K). Accordingly, we provide analytical equilibrium characterizations and
comparisons for two settings:

1. The Nash equilibrium when all agents have K-hop awareness, for general K.
Specifically, for a general K-hop network game, we show that the game is
equivalent to a one-hop network game played on a new network interdepen-
dency matrix Ĝ, constructed from the original game matrix G, in a way that
the links ĝij between agents i and j account for the spillovers across all paths
of length at most K to agent i from agent j.

2. A mixture of one aware (e.g., K = 2) and N − 1 unaware (e.g., K = 1)
agents in games of pure strategic substitutes/complements. For this case, we
show that in a game of strategic substitutes, the agent can free-ride more
on others by increasing its awareness compared to other agents. This means
that awareness can benefit the aware agent by allowing it to attain the same
security outcomes while lowering its effort (and therefore, overall increasing
its utility), but that at the same time, it will hurt the other unaware and
passive agents, as they will be (incorrectly) assuming that the aware agent is
exerting higher effort than it truly is. We also provide a lower bound for the
effort of an agent with two-hop awareness in a game of strategic complements,
constructed from the agent’s efforts in one-hop awareness games.

Finally, we explore the K-hop equilibrium structure and provide numerical
experiments for special network structures (e.g., Stars, Directed Acyclic Graphs,
and Random Graphs).

To summarize, our main contributions include: (i) proposing a new model to
capture extended network awareness in network security games, (ii) showing an
equivalence between our proposed K-hop games and a one-hop game played on
an appropriately defined adjacency matrix, and (iii) elaborating on the impacts
of K-hop awareness on agents’ security efforts, as well as on the equilibrium’s
quality (in terms of agents sum of efforts), both analytically and through numer-
ical experiments. Our findings show that extended awareness of network effects
can, in general, benefit agents by allowing them to optimize their security plan-
ning and resource allocation, but that decision makers who are less sophisticated
and lack this awareness can suffer, and that consequently, overall investment lev-
els in security are highly dependant on network structure and they may improve
or deteriorate.

The remainder of this paper is organized as follows. We review the work most
closely related to our paper in Sect. 1.1. In Sect. 2, we review the commonly
studied model of (one-hop) network security games, and then introduce our
proposed model of K-hop network games. We analyze the equilibria of this model
in Sect. 3, and illustrate our findings on special network structures and using
numerical experiments in Sect. 4. We conclude with directions for future work in
Sect. 5.
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1.1 Related Work

Game-theoretical studies of security decision making on networks have adopted
different modeling choices. We contrast the interdependent/network security
game models we consider here, with two other prominent models: network inter-
diction games, and attack graph models. Network interdiction games focus on
the strategic disruption of networks facing adversarial attackers, by identify-
ing and neutralizing critical nodes or links to impede the adversary’s opera-
tions [26,28,29]. Attack graphs, on the other hand, model the possible pathways
an attacker could take to compromise a network, helping defenders understand
potential vulnerabilities and prioritize defenses [1,15,24,27,33]. Network secu-
rity games in general, and our model included, do not consider the potential
evolving or stepping-stone nature of attacks, but rather the equilibrium state.
That is, unlike network interdiction games and attack graph models, an agent
in a network security game model decides on its security investments once, as a
best-response to an equilibrium state of the network, before attacks are launched,
and does not adjust any links or investments in response to an evolving attack
in the graph.

Our work is most closely related to the literature on network games. Some
previous works on general network games (not restricted to the security context)
include [11,16,19,20,22,31,32,35]. [19] has specifically discussed the existence
and uniqueness Nash equilibrium for security decision making using linear influ-
ence networks while [20,22] have looked at existence, uniqueness, and stability
of one-hop network games where necessary and sufficient conditions for guar-
anteed uniqueness are introduced. [11] characterizes the price of anarchy in the
strategic form game and compares the benefits of improving security technology
and improving incentives, and shows that improving technology alone may not
offset the price of anarchy. [16] has summarized the modeling assumptions and
categorized the equilibrium solutions in interdependent security games, [31,35]
explore the bounded rationality of players using quantal response model and
prospect theory. Our framework can also be seen as a discussion of boundedly
rational agents (those who lack awareness of all network risk spillovers affecting
them).

Access to information about other firms’ security decisions, and decisions
regarding information sharing, can significantly impact firms’ security posture,
as noted by [4]. Despite the potential benefits, various concerns such as confi-
dentiality often hinder information sharing. To address this, legislation such as
the Cybersecurity Information Sharing Act of 2015 [8] and guidance from the
National Institute of Standards and Technology (NIST) [12] encourage firms to
share intelligence.

In relation to our paper, we suggest that information shared by firms can
also be viewed as a means of increasing their network awareness, providing them
information about other firms’ security behavior and of potential multi-hop risk
spillovers (in our terminology, helping them change from passive to reactive
agents, even if they do not possess multi-hop awareness). Specifically, we argue
that lack of awareness can hurt decision makers when other agents have extended
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network awareness; mandating or incentivizing information sharing can help alle-
viate such issues.

2 Model

2.1 One-Hop Model

We consider a network of N interconnected decision-makers; these can include
device owners/operators, various divisions within a larger organization, or dif-
ferent sectors of the economy. We specify this network using a graph G := 〈V, G〉
with the N agents as the set of vertices V, and a weighted and directed inter-
dependency matrix G specifying their connections, where gij ∈ R captures
the dependence of agent i’s security outcomes on agent j’s security efforts (as
detailed shortly).

Each agent i selects an effort xi ∈ R≥0; this could represent the agent’s
investment in security (hardware, software, employee training, etc.). This effort
impacts not only the agent itself, but also other agents in the network, as cap-
tured by the interdependency matrix G. Specifically, when gij ≥ 0, we call i
and j’s relationship a strategic substitute; this means that if agent j is better
protected, it is less likely that it is compromised and used to launch an attack on
agent i, and as a result, i can invest less in security and achieve the same security
outcomes. In contrast, gij ≤ 0 is a strategic complement relation; meaning, if
agent j increases its security effort, it is less likely to be attacked, making agent
i more likely to be the target of an attack instead, so that i has to invest more
in security in order to achieve the same security outcome.

The agent’s utility is determined by its own action, as well as the actions of
its one-hop neighboring agents. Let x ∈ R

N×1 denote the vector of all agents’
actions. Then, agent i’s utility is given by:

ui(x;G) = bi(xi +
N∑

j=1

gijxj) − cixi , (1)

where bi(·) : R → R is a twice-differentiable, strictly increasing, and strictly con-
cave benefit function, which has as its argument the aggregate effort experienced
by the agent from its one-hop neighbors in the graph, and ci > 0 is the unit cost
of effort for agent i.

The (one-hop) network game involving a set of N agents, their efforts x, and
their utility functions ui(x;G), has been extensively analyzed in previous studies
(e.g., [3,6,11,19,20]). These games are known as games of linear best-replies,
where the Nash equilibrium x∗ is characterized by a set of linear best-response
equations:

x∗
i = max{0, qi −

∑

j∈Ni

gijx
∗
j}, (2)

where qi satisfies b′
i(qi) = ci. This condition ensures that the agent’s effort is

optimal, balancing marginal benefits and costs. The best-response (2) indicates
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that agent i exerts an effort x∗
i to reach the aggregate effort level qi, considering

the spillover
∑

j gijx
∗
j from its one-hop neighbors’ efforts at equilibrium. If the

combined effort from neighboring agents already meets or exceeds qi, agent i will
exert no additional effort.

We next propose an extension of this model: K-hop network (security) games,
in which agents are more “aware” as they account for the impacts of actions taken
by those further away in the network on their security.

2.2 K-Hop Model

We consider the same set of agents on the same network but with an extended
awareness: an agent in a K-hop network game considers, or is aware of, the
spillover of the (security) efforts of other agents up to K-hop away when selecting
its effort.

Formally, the utility of an agent i with K-hop awareness is given by:

u
(K)
i (x;G) = bi(xi +

K∑

k=1

N∑

j=1

g
(k)
ij xj ) − cixi, (3)

where for agents i and j, g
(k)
ij is the element in the ith row and jth column of the

kth power of the adjacency matrix G, and captures the impact of an agent j who
is k-hops away on agent i’s utility. By summing over the possible k’s (from 1 to
K), we are considering the impact of all possible effort spillovers from neighbors
within k-hops of agent i on its utility.

This model also leads to a network game of linear best-replies. The Nash
equilibrium x∗

(K) for agents with K-hop awareness is determined by:

x∗
i(K)

= max{0, qi −
K∑

k=1

N∑

j=1

g
(k)
ij x∗

j(K)
} (4)

Note that this model captures the commonly studied network security game
model of Sect. 2.1 when K = 1. As K increases, the agent has more awareness
of other agents further away in the network. As a special case, for K → ∞,
we say the agent attains omni-vision, as the agent will be accounting for, and
best-responds to, the efforts of all other (reachable) agents in the network and all
paths through which risk spillovers can propagate and reach it. For this setting,
if all agents have omni-vision, agent i’s utility (3) at the ∞-hop game’s Nash
equilibrium is given by:

u
(∞)
i (x∗

(∞);G) = bi

((
(I + G + G2 + G3 + . . .)x∗

(∞)

)
i

)
− cixi, (5)

Let S := I+G+G2+G3+. . .. It is easy to see that S(I−G) = I, or S = (I−G)−1,
provided that S converges. It is known that limk→∞ Gk = 0 if and only if
ρ(G) < 1, where ρ(G) is the spectral radius of G; absolute convergence of S is
guaranteed under this condition [30,36]. Using this relation, in our analysis of
K-hop games in Sect. 3.1, we will establish a relation between the K-hop game’s
Nash equilibrium characterization and the matrix (I − G)−1.
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3 Impacts of Extended Awareness: Nash Equilibria
of K-Hop Network Games

In this section, we explore the implications of agents’ extended awareness on
their strategic security decision making by looking into the Nash equilibria that
arise as agents’ awareness of the network (the K in the K-hop game) increases.

Warm-Up: No Awareness (K = 0) to One-Hop Awareness (K = 1). In order
to illustrate the impacts of extended awareness, we start with a warm-up case:
increasing awareness from K = 0 (no awareness; ignoring all network effects) to
K = 1 (the commonly studied one-hop network security game). The equilibrium
of the K = 0 game is x∗ = q∗ (i.e., each agent i investing at its respective
indifference point qi). When awareness is upgraded to K = 1, the new optimal
effort levels depend on whether only some or all agents access a higher awareness.
We first consider the case where only one agent (w.l.o.g., agent i = 1) can
upgrade its awareness from K = 0 to K = 1: the equilibrium will be x∗

1 =
max{0, q1 −∑

j g1jqj}, and x∗
j = qj ,∀j 
= 1. We can see that the change in agent

1’s effort depends on the nature of the game graph. For instance, for games of
strategic substitutes (resp. complements) where gij ≥ 0,∀j (resp. gij ≤ 0,∀j),
agent 1 lowers (resp. increases) its efforts and its free riding increases (resp.
decreases) as the agent becomes aware of its dependence on other agents. At the
other extreme, if all agents can upgrade their awareness from K = 0 to K = 1,
the NE is given by the fixed point of best-responses in (2); again, depending
on the substitute/complement effects, the effort of each agent i may increase or
decrease compared to the K = 0 case.

An Illustrative Example: One-Hop (K = 1) to Two-Hop Awareness (K = 2).
From the above warm-up case, we can see that the impacts of increasing aware-
ness on agents’ efforts depend on (1) the strategic or complement nature of
their dependencies, and (2) the potential differences in the awareness levels of
agents. In the following numerical example, we highlight the same effects when
awareness increases from immediate neighbors (K = 1) to two-hop away neigh-
bors (K = 2), and further show that an additional consideration arises: (3)
whether agents with lower awareness are passive or reactive. In the passive case,
less aware agents (here, those with 1-hop awareness) best-respond assuming all
other agents have lower awareness, too. Reactive (but still less aware) agents, on
the other hand, best-respond to the observed level of effort of all agents, includ-
ing the higher-awareness agents. The rationale is that these lower awareness
agents assume any higher awareness agents are behaving sub-optimally without
attributing a reason to their (perceived) sub-optimal efforts.

Example 1. Consider two network games represented by the adjacency matrices
A =

(
0 0.3 0.2−0.3 0 0.5
0.2 0.5 0

)
and B =

(
0 −0.3 0.2

−0.3 0 0.5
0.2 0.5 0

)
, and with q = [1, 1, 1]T .

The only difference between the two networks is in edge g12. As illustrated
by Fig. 1 we can see that by changing only this one link in the network, the
equilibrium in each scenario (all one-hop aware, only agent 1 two-hop aware and
others passive/reactive, and all two-hop aware) changes.
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Fig. 1. Two different scenarios arise for two largely similar networks as levels of aware-
ness increase.

Focusing on Fig. 1a first, we can see that agent 1 can free-ride more by being
two-hop aware. If other agents are unaware themselves but reactive to agent
1’s two-hop awareness, they adjust their efforts according to agent 1’s lowered
investment, agent 2 by decreasing its effort due to the negative link and agent
3 by increasing its own effort due to the positive link. If these agents manage
to acquire resources to also become two-hop away, then agent 1 will increase its
effort since agents 2 and 3 will also free-ride more by becoming two-hop aware.

Looking at Fig. 1b next, we see a different change in the equilibrium, even
though, compared to Fig. 1a, the networks are not very different. Specifically,
when other agents become reactive to agent 1’s 2-hop awareness, they will have
two different reactions: (i) agent 2 will also start free-riding more due to the
negative link, (ii) agent 3 tries to make up for this with a higher effort. Lastly,
when all agents have two-hop awareness, agents 1 and 2 will free-ride more, and
agent 3 will try to make up for this by its own effort.

Motivated by the above examples, we next provide analytical results for
two settings: Sect. 3.1 characterizes the equilibrium when all agents have K-
hop awareness for general K, while Sect. 3.2 considers a mixture of one aware
(e.g., K = 2) and N − 1 unaware (e.g., K = 1) agents in games of pure strate-
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gic substitutes/complements, and the impacts of the unaware agents’ passive
behavior on the ability of the one aware agent to free-ride on them.1

3.1 All K-Hop Aware Agents

In this section, we consider games where all agents are aware of their K-hop
neighbors (and are reactive). We start with the scenario K < ∞, which rep-
resents a case in which agents may not have the resources to be aware of all
reachable agents and, at best, only take some into account. We also discuss the
special case of K → ∞; this case is important as it represents an ideal scenario
where agents have unlimited resources and can best-respond to all reachable
agents regardless of how distant they are, which we call omni-vision. We com-
pare the two cases, and illustrate the differences using an example at the end of
the subsection.

Nash Equilibria of K-Hop Network Games. In the following proposition, we
identify an equivalence between the Nash equilibria of such K-hop games and
that of a one-hop game with a specific adjacency matrix.

Proposition 1. If ρ(G) < 1, then best-response of agents in a K-hop network
game is the same as the best-response of agents in a one-hop game on a network
with adjacency matrix Ĝ = (I − G)−1(I − GK+1) − I.

Proof. If ρ(G) < 1 we can define SK := I +G+G2 + . . .+GK = (I − G)−1(I −
GK+1), we can write agent i’s K-hop best-response (4) as:

x∗
i(K)

= max{0, qi −
N∑

j=1

[SK − I]ij x∗
j(K)

}

= max{0, qi + x∗
i(K)

−
N∑

j=1

[(I − G)−1(I − GK+1)]ij x∗
j(K)

} (6)

which is equivalent to the best-response (2) of a one-hop game on a network
with adjacency matrix (I − G)−1(I − GK+1) − I.

In Proposition 1, we are constructing a new network interdependency matrix Ĝ
from the original matrix G in a way that the links ĝij between agents i and j
account for the spillovers across all paths of length at most K to agent i from
agent j in the original game.

The following corollary considers the special case of an ∞-hop game where all
agents have omni-vision, i.e., they are aware of, and best-respond to, the efforts
of all other agents.

Corollary 1. If ρ(G) < 1, then the best-response of agents in a ∞-hop network
game is the same as the best-response of agents in a one-hop game on a network
with adjacency matrix Ĝ = G(I − G)−1.
1 We will illustrate similar impacts when K ≥ 2 and in general games of mixed

strategic complements/substitutes through numerical experiments in Sect. 4.
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The proof follows from noting that if ρ(G) < 1, then limK→∞ GK+1 = 0, and
that the infinite sum S = I +G+G2 + . . . can be re-written S − I = G(I +G+
G2 + . . .) = GS = G(I − G)−1.

By reducing a K-hop game to a one-hop game on an appropriately trans-
formed network, analysts can more easily predict and manage the propagation
of risks and the strategic interactions between different entities in the network.
This reduction allows for the application of existing tools and methodologies
designed for one-hop games, which are often more mature and better under-
stood. For example, this approach can be applied to verify the uniqueness of the
Nash equilibrium in a K-hop network game which we know the Nash equilibrium
of the one-hop network game is unique.

3.2 Mixture of Aware and Unaware Agents

The previous subsection analyzed the K-hop game’s Nash equilibrium when all
agents can attain K-hop awareness. However, it may not be possible for all agents
to attain this awareness. One reason could be limited resources to gather intel-
ligence about other agents’ security decisions or the high cost of processing all
available information. For instance, higher-level agents in a hierarchical network
are expected to have full knowledge of the branches below them, but they may
only have limited awareness due to the constraints of the human mind [14].

Motivated by this, we consider a scenario in which only one agent is able
to upgrade its awareness (e.g., best-responding to both immediate and 2-hop
away neighbors), while others are passive and remain at a lower awareness level
(e.g., considering only their immediate neighbors). We discuss the change in
the effort of the aware agent, and its ability to free-ride on others given their
passive and unaware strategies. We present this analysis for two special network
structures: games of strategic substitutes and games of strategic complements,
where gij ≥ 0 and gij ≤ 0, respectively, for all i, j. The former captures networks
where a security compromise of one agent negatively impacts others connected
to it (due to, e.g., the spread of the attack or disruption of joint operations).
The latter is most closely related to networks where attackers are interested in
identifying the weakest targets.

We start with the impacts of one agent unilaterally upgrading its awareness
in a game of strategic substitutes.2

Proposition 2. Consider a network game of strategic substitutes, where agent
i has K-hop awareness, while agents j 
= i have K ′ < K awareness. Then, agent
i’s effort will be lower compared to a game where it also had K ′-awareness if and
only if there is at least one agent l with effort x∗

l,(K′) > 0 is K ′ < k ≤ K hops
away from agent i. If no such agent exists, agent i’s effort will be the same as
the game where it also had K ′-awareness.

2 The results of Proposition 2 also hold for the case of general networks if all paths
with distance K have an even number of complement (negative weight) edges.
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Proof. When agent i is aware of up to K-hop neighbors in its best-response,
while other agents are only aware of others at most K ′ < K hops away, we can
write:

x∗
i(k)

= max{0, qi −
N∑

j=1

K′∑

l=1

g
(l)
ij x∗

j(K′) −
N∑

j=1

K∑

l=K′+1

g
(l)
ij x∗

j(K′)} (7)

For a game of strategic substitutes, we know g
(l)
ij ≥ 0 for all l. Therefore we

can conclude that
∑N

j=1

∑k
l=K′+1 g

(l)
ij x∗

j(K′)
≥ 0 and will strictly be positive if at

least one agent with positive effort is reachable with K ′ < k ≤ K hops.

Proposition 2 states that if an agent becomes more aware than others in a
game of strategic substitutes, it can (weakly) increase its free-riding on others.
As a special case, if for the aware agent x∗

i(K′)
= 0 at some K ′, then x∗

i(K)
= 0 for

all K > K ′. This means that awareness can benefit the aware agent by allowing
it to attain the same security outcomes while lowering its effort (and therefore,
overall increasing its utility), but that at the same time, it will hurt the other
unaware and passive agents, as they will be (incorrectly) assuming that the aware
agent is exerting higher effort than it truly is.

For games of strategic complements, on the other hand, we cannot make a
statement as general as Proposition 2, since the sign of all entries of the powers
of the adjacency matrix will be alternating, i.e., g

(2n−1)
ij ≤ 0, g

(2n)
ij ≥ 0 for all

i and j. In other words, even though the odd-hop away neighbors maintain a
strategic complement relation to agent i’s effort, neighbors even number of hops
away are turned into strategic substitutes from the viewpoint of agent i. That
said, we can comment on the efforts at equilibrium when awareness increases
from K to K+1 hops. Specifically, by defining ḡi as the impact of agent i’s most
influential neighbor, i.e., ḡi = {gij : |gij | ≥ |gik| , ∀k}, we can state the following
result.

Proposition 3. Consider a game of strategic complements where agent i has
two-hop awareness while agents j 
= i have one-hop awareness. Then agent i’s
effort will be lower compared to a game where it also had one-hop awareness,
assuming qi > 0, at most by ḡi

∑
j

∑
k gkjx

∗
j .

Proof. Since qi > 0, we can write x∗
i(1)

= qi − ∑N
j=1 gijx

∗
j(1)

≥ 0 and accordingly
write x∗

i(2)
as:

x∗
i(2)

= max{0, qi −
N∑

j=1

(gij +
N∑

k=1

gikgkj)x∗
j(1)

}

= max{0, x∗
i(1)

−
N∑

j=1

N∑

k=1

gikgkjx
∗
j(1)

} (8)
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Further, since we know gij ≤ 0 we can further write
∑N

k=1 gikgkjx
∗
j ≤

ḡi
∑

k gkjx
∗
j where ḡi is the element with largest absolute value in row i, i.e.

most influential neighbor of agent i. Therefore, we can write:

x∗
i(1)

− ḡi

N∑

j=1

N∑

k=1

gkjx
∗
j(1)

≤ x∗
i(2)

≤ x∗
i(1)

(9)

The second term on the LHS bound in (9) is non-negative, confirming that for
this setting, upgrading the awareness will not make the agents put in more effort.

The term
∑N

j=1

∑N
k=1 gkjx

∗
j could be interpreted in the network as the sum of

the spillovers of all agents if they all had one-hop awareness. Therefore, the
amount that agent i can free-ride by having two-hop awareness, compared to
one-hop awareness, is bounded by the sum of spillovers of all agents over the
network, weighted by the most influential neighbors of the agents.

We next take advantage of the knowledge of specific network structures and
numerical experiments to discuss the more general cases and remove the con-
straints on edge weights.

4 Special Network Structures

In this section, we examine specific network structures and analyze each, both
analytically and numerically. We identify equilibria in synthetic networks where
all agents have K-hop awareness with varying K. We employ the sum of efforts
as a baseline metric to assess the “quality” of the game. This evaluation is further
extended by comparing

∑
i qi with the outcomes from games incorporating K-

hop awareness, represented by
∑

i x
∗
i(K)

. Our analysis begins with elementary
graph configurations, such as cycles and star graphs, before advancing to a more
general case of directed acyclic graphs.

One-Way Cycle: It is relatively easier to understand the changes in the efforts
of the agents in cycle graphs. Consider a directed one-way cycle graph with sim-
ilar connections between agents, meaning that each agent i only has an outgoing
link to agent i + 1 with weight g. For this case, we have gi,i−1 = 0. This way,
the best-response of agents will come down to:

x∗
i(k)

= max{0, qi −
k∑

l=1

glx∗
i+l(k)

} (10)

As previously noted, for g > 0, it holds that x∗
i(k)

≤ x∗
i(k′)

for k > k′. Con-
versely, if g < 0, oscillations occur due to the alternating sign of the summation
term in (10). For |g| < 1, these oscillations will converge as the number of con-
sidered hops grows, limn→∞ gn = 0. However, if |g| > 1, the powers of g will
diverge, also with alternating signs. In cases of high awareness levels, an agent
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may completely free-ride and have, x∗
i(2k−1)

= 0, if aware of an even number of
hops and exert significant effort, x∗

i(2k)
� 0, when aware of an odd number of

hops. This analysis underscores that even in a straightforward case of a one-way
cycle with uniform link weights, the increase in agents’ awareness can lead to a
range of outcomes.

Fig. 2. Game quality comparison for 10 randomly generated one-way cycle networks
with 5 K-hop aware agents (K from 1 to 10) with the no awareness case (dashed red
line). (Color figure online)

To relax the conditions on the connections in this case, with the aim to
comment on the impact of network structure, we work with randomly generated
weights within the range (−1, 1) and calculate the equilibrium. In Fig. 2, each
data point represents the game quality on a randomly generated network of 5
agents for when agents are aware of K-hops with K going from 1 to 10. We
can see that after a few hops the game quality converges, however, we can see
that game quality can be either above or below the starting point which is
no awareness. This indicates that by considering more hops, the spillovers are
becoming less and less important. Also, the jump in game quality after going
from one-hop to two-hop is significant.

Star Network: Another simple structure that can be of interest is star net-
works. Star networks have been studied in various applications, such as the
structure of the internet [37]. Consider an undirected star network with the
central node labeled as 1, and the remaining nodes are only connected to the
central node. This way we have one node with n − 1 connections and n − 1
nodes with 1 connection, the adjacency matrix of this network will have the

form G =
(

0 gT1·
g1· 0

)
and G2 =

(‖g1·‖22 0
0 g1·gT1·

)
, where the bottom right block is

an n − 1 × n − 1 matrix with ith row being: [g12g1i, gi3g1i, . . . , g2ii, . . . , g1ng1i].
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Therefore, the agents’ efforts after considering two hops will be as follows:

x∗
1(2)

= max{0, q1 − gT1·x
∗
(2) − ‖g1·‖22x∗

1(2)
} (11)

x∗
i(2)

= max{0, qi − g1i(x∗
1(2)

+
∑

k

g1kx
∗
k(2)

)} (12)

We can see for the central agent, the rebound of its own effort (‖g1·‖22x∗
1(2)

) is
allowing it to free-ride more and have a lower effort, while q1 −gT1·x

∗
(2) is similar

to one-hop awareness, with the only difference of accounting for other agents
being two-hop aware. The case for non-central agents is rather simple as well.
The two-hop spillovers are weighted by the two-hop neighbors’ connection to the
central agent and then summed with the effort of the only one-hop neighbor of
agent i, agent 1. Again, for an easier conclusion, we turn to numerical simulation
on synthetic networks with edge weights randomly generated in the range (−1, 1)
with 5 agents.

Fig. 3. Game quality comparison for 10 randomly generated star networks with 5 K-
hop aware agents (K from 1 to 10) with the no awareness case (dashed red line). (Color
figure online)

As seen in Fig. 3, in terms of game quality, this case is very similar to the
case of the one-way cycle, even though the effort profiles can be very different.

Directed Acyclic Graph: Hierarchical structures are pervasive across vari-
ous domains seen in technological systems, such as the Internet, organizational
structures, and software architectures. Directed Acyclic Graphs (DAGs) are a
specific type of hierarchical network characterized by a directed graph with no
cycles, meaning there is a unidirectional flow from one node to another without
returning to the starting node.

These types of networks can be represented by upper triangular adjacency
matrices with zero diagonals, given that loops are not allowed. Normally, in
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hierarchical matrices, the higher nodes have the full awareness of the sub-network
below them, we can use k-hop model to capture this property of these networks.

For these networks, we can iteratively calculate all equilibrium efforts by
starting from the bottom of the hierarchy (agents that have no outgoing links)
and moving upwards. This is possible because The kth power of an upper trian-
gular matrix with zero diagonals is an upper triangular matrix with zero diagonal
and k − 1 zero superdiangonals above.3

We can see that for a hierarchical network with n agents, the lowest positioned
agent will not be able to take a strategic effort since Gn = 0. the following
example illustrates how this iterative procedure works:

Example 2. Consider a hierarchical network with the adjacency matrix G =( 0 g12 g13
0 0 g23
0 0 0

)
where we know G2 =

(
0 0 g12g23
0 0 0
0 0 0

)
and Gk = 0 for k ≥ 3. For the

scenario where each agent is aware of two hops, we can write (assuming qi >
0 , ∀i):

x∗
3(2)

= q3 (13)

x∗
2(2)

= max{0, q2 − g23q3} (14)

x∗
1(2)

= max{0, q1 − g12x
∗
2(2)

− (g13 + g12g23)q3} (15)

As seen in these equations, we can start from the lowest nodes to find the
equilibrium for these types of networks. For tree graphs, this model is equivalent
to each agent considering the whole branch below them and not being aware
of the branches above or parallel. Starting from the lowest nodes, we can find
their equilibrium effort independently from other nodes (13), then we move to
the nodes in the higher branches (14), and (15) until we know all the efforts in
the network.

The numerical experiments for DAGs are more intriguing than previous cases.
For these networks, we increased the number of agents to 10 and the range of edge
weights to (−2.5, 2.5). With these changes, we see that, as expected, all cases will
converge. Even though this is not guaranteed for DAGs, all the random cases
have higher game quality than the no awareness scenario. Also, the damping
rate fluctuations in Fig. 4 depend on the edge weights; if the edge weights are
large, then they can continue on as many hops as there are agents; however, the
fluctuations will definitely end since there exists a k for which Gk = 0.

3 We can write the elements of the second power of A as [A2]ij =
∑

k aikakj . Given
ai· = [0, 0, ..., 0, ai,i+1, ..., ain] and aT

·j = [a1j , ..., aj−1,j , 0, 0, ..., 0] we can easily see
for j = i+ 1 we have [A2]ij = 0 since the first i elements of ai· are zero and the last
n − j + 1 = n − i elements of a·j are zero, similarly for j < i + 1. We can continue
this process for higher powers of A and show the results.
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Fig. 4. Game quality comparison for 10 randomly generated DAGs with 10 K-hop
aware agents (K from 1 to 10) with the no awareness case (dashed red line). (Color
figure online)

5 Conclusion

In this study, we extend the traditional framework of network security games by
introducing K-hop network games, where agents possess extended awareness of
risk spillovers up to K hops away. Our analysis highlights several key findings:

We demonstrate that agents’ strategic security decisions and equilibrium
behaviors are significantly influenced by their level of awareness. Increasing
awareness results in changes in optimal effort levels, contingent upon the net-
work structure and the nature of dependencies (complements vs. substitutes). In
strategic substitutes games, agents with higher awareness can lower their efforts
and increase free-riding, particularly if they are aware of agents with positive
efforts within their extended network. In strategic complements games, the ben-
efits of increased awareness from one-hop to two-hop are bounded, with efforts
potentially decreasing for two-hop awareness but not leading to increased efforts
compared to one-hop awareness scenario. Our examination of specific network
structures shows varied impacts of increased awareness on agents’ efforts. In
one-way cycles, we analytically showed that efforts can oscillate with awareness
levels, while in star networks, due to two-hop awareness, central agents can free-
ride more compared to one-hop awareness. In hierarchical DAGs, agents’ efforts
are determined iteratively from the lowest to the highest nodes. Our numeri-
cal experiments indicate that the overall game quality, measured by the sum
of agents’ efforts, can both improve and deteriorate with increased awareness.
The extent and direction of this change depend on network structure and edge
weights.

In conclusion, extended awareness in network security games enables agents
to optimize their security investments more effectively, but also exposes poten-
tial pitfalls for less aware agents. These insights can inform better policies and
resource allocation strategies, emphasizing the necessity for sophisticated aware-
ness in managing K-hop risk dependencies.
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Future research can expand on these findings by exploring more complex
and dynamic network structures, where agents’ awareness levels may change
over time. Further studies could also consider the impact of partial or evolving
awareness, where agents gradually gain or lose information about their network
environment. These extensions would enhance our understanding of strategic
interactions in networks and contribute to the development of more robust mod-
els for predicting and optimizing agents’ efforts in various domains.
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Abstract. We present FlipDyn-G, a dynamic game model extending
the FlipDyn framework to a graph-based setting, where each node repre-
sents a dynamical system. This model captures the interactions between
a defender and an adversary who strategically take over nodes in a graph
to minimize (resp. maximize) a finite horizon additive cost. At any time,
the FlipDyn state is represented as the current node, and each player can
transition the FlipDyn state to a node based on the connectivity from the
current node. Such transitions are driven by the node dynamics, state,
and node-dependent costs. This model results in a hybrid dynamical
system where the discrete state (FlipDyn state) governs the continuous
state evolution and the corresponding state cost. Our objective is to
compute the Nash equilibrium of this finite horizon zero-sum game on a
graph. Our contributions are two-fold. First, we model and characterize
the FlipDyn-G game for general dynamical systems, along with the cor-
responding Nash equilibrium (NE) takeover strategies. Second, for scalar
linear discrete-time dynamical systems with quadratic costs, we derive
the NE takeover strategies and saddle-point values independent of the
continuous state of the system. Additionally, for a finite state birth-death
Markov chain (represented as a graph) under scalar linear dynamical sys-
tems, we derive analytical expressions for the NE takeover strategies and
saddle-point values. We illustrate our findings through numerical studies
involving epidemic models and linear dynamical systems with adversarial
interactions.

Keywords: Game Theory · Graphs · Dynamical Systems

1 Introduction

Cyber-Physical Systems (CPS) are essential for integrating computational
elements with physical processes, enabling advanced functionalities in vari-
ous domains. Examples include smart grids for efficient energy distribution,
autonomous vehicles for navigation and safety, and industrial automation sys-
tems for enhanced productivity through precise control and sensor feedback [1,2].
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In the context of CPS, each node in a graph can be represented as a dynamical
process, such as the generation and consumption of electricity in smart grids, the
motion dynamics of autonomous vehicles, or the operational processes in indus-
trial automation. These dynamical processes are interconnected through edges
that represent the interactions and dependencies between them. For instance,
in a smart grid, nodes may represent dynamic processes of energy generation
and consumption at different substations, while edges denote the power flow
between these substations [3]. Similarly, in autonomous vehicle networks, nodes
could represent the dynamic driving processes of individual vehicles, with edges
capturing the communication and coordination required for safe and efficient
traffic flow [4–6].

The use of graphs in modeling CPS is crucial for understanding the sys-
tem’s overall behavior and ensuring its robust operation. Graphs facilitate the
visualization and analysis of how individual dynamic processes interconnect to
form a larger, cohesive system. This interconnection highlights the importance
of securing these nodes and their interactions to prevent disruptions that could
compromise the entire system [7,8].

Securing CPS critically involves mitigating the risks of stealthy takeovers,
where an adversary covertly gains control of system components. The FlipIT
game [9] provides a framework for analyzing such scenarios, where both the
attacker and defender can stealthily control a static resource without the other
party’s immediate knowledge. This model captures the continuous and covert
nature of security threats in CPS, highlighting the need for persistent vigilance
and strategic defense mechanisms.

The FlipIT framework was extended to dynamical systems in FlipDyn [10],
where a defender and adversary aim to take over a common resource modeled
as a discrete-time dynamical system over a finite horizon. Building on FlipDyn,
this paper focuses on resource takeovers in graphs, where each node represents
a resource with its own dynamics, and nodes are connected by edges reflecting
CPS interactions. Two players, a defender and an adversary, seek to repeatedly
take over the graph’s resources. This setup captures strategic interactions in a
dynamic, interconnected environment, generalizing the FlipDyn framework to
multiple states.

Analyzing takeover games involves understanding optimal strategies for both
the adversary and defender, considering various graph topologies and CPS char-
acteristics. By leveraging game-theoretic models and topology structures, this
paper proposes robust defense mechanisms to enhance CPS resilience against
takeover attacks. This approach is crucial for ensuring the continued reliability
and safety of essential infrastructures amidst emerging cyber threats.

1.1 Related Works

The seminal FlipIT [9] analyzes a two-player zero-sum game between a defender
and an adversary attempting to take over a static resource, such as a com-
puting device, virtual machine, or cloud service [11]. The work of FlipIT was
generalized to the games of timing [12], where the actions of each player are
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dependent on the available exploitable vulnerability, and extended to include
time-based exponential discounting [13]. FlipThem [14] expanded the game to
multiple resources with AND/OR models. The work in FlipThem was extended
to i) a threshold-based version [15], which considered a finite number (thresh-
old) of resources beyond which there exists no incentives to takeover, ii) multi-
ple resource with constraints on the frequency of takeover actions [16], and ii)
heterogeneous resource costs and a learning-based method to determine player
strategies [17]. Similar extensions include, Cheat-FlipIt model [18], in which
the opponent agent may feint to flip the resources first, and then control the
resources after a finite delay. Such takeover strategies have also impacted the
blockchain system [19], where arbitrage bots in decentralized exchanges engage
in priority gas auctions to exploit against ordinary users. Beyond the domain of
cybersecurity, the FlipIT model has been introduced in supervisory control and
data acquisition (SCADA) to evaluate the impact of cyberattacks with insider
assistance. The model of FlipIT has been extensively applied in system secu-
rity [11]. These works primarily focused on resource takeovers within a static
system, lacking consideration for the dynamic evolution of physical systems. In
contrast, our work incorporates the dynamics of a physical system in the game
of resource takeovers between an adversary and a defender, addressing the need
for strategies that account for the continuous and evolving nature of CPS.

A finite-horizon zero-sum stochastic game has been used to analyze proba-
bilistic reachable sets for discrete-time stochastic hybrid systems [20], where both
players act simultaneously. Conversely, controllers have been synthesized [21] for
intermittent switching between a defender and an adversary in discrete-time sys-
tems with multi-dimensional control inputs and constraints [22]. Such takeovers
correspond to covert misappropriation of a plant [23], where an attacker controls
the plant while remaining hidden from the supervisory system, extending these
attacks to load frequency control (LFC) systems [24]. Unlike previous research,
our paper provides a feedback signal to infer control and allows taking control
of the plant at any instant, balancing operational cost and performance.

The FlipNet model [25] extends FlipIT to a graph, representing a networked
system of multiple resources, where each player can take over nodes. Network
security in graphs is also viewed as advanced persistent threats (APT), modeled
as a zero-sum repeated game with states as compromised edges [26]. Similarly,
APTs are modeled as multi-stage zero-sum network hardening games, where the
adversary finds the shortest path and the defender allocates resources to block
it. Recently, dynamic information flow tracking has been proposed to detect
APTs via a multistage game [27]. A similar APT model is explored in Cut-
the-Rope [28], where the defender cuts the backdoor access of an adversary,
demonstrating efficacy on attack graphs in the robotics domain [29]. FlipIT has
also been used to study malware diffusion in epidemic models [30]. This paper
addresses FlipIT in a graph-based setting, where the defender and adversary
repeatedly aim to take over nodes. Unlike previous works, this zero-sum game
is played over a finite horizon with a discrete-time dynamical process on each
node and time-varying costs.
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Our prior work which extends the FlipIT model to incorporate dynamical
systems, termed FlipDyn [10]. The model of FlipDyn was extended to jointly
solve the takeover and control policy [31]. In this paper, we extend the FlipDyn
model to a finite horizon zero-sum game over a graph, where each node represents
a dynamical system and the edges correspond to the interaction between these
systems. The contributions of this work are two-fold:

1. Takeover strategies over a graph with discrete-time dynamical sys-
tem on nodes: We formulate a two-player zero-sum takeover game involving
a defender and an adversary seeking to takeover the nodes of a graph, repre-
senting a discrete-time dynamical systems. The costs incurred by each player
are contingent on the current node of the graph. Assuming knowledge of
the discrete-time dynamics, we establish the Nash equilibrium (NE) takeover
strategies and saddle-point values.

2. State-independent takeover strategies and saddle-point values for
scalar/1− dimensional systems: For a linear discrete-time scalar dynami-
cal system with quadratic takeover and state costs, we determine NE takeover
policies independent of the continuous state of both players. Furthermore, for
a topology representing a finite state birth-death process, termed dual deter
model, we derive analytical expression of the NE takeover policies and saddle-
point values.

We illustrate our results on an epidemic model with no node dynamics and
on an example from finance.

This paper is structured as follows. Section 2 formally defines the FlipDyn
problem in a graph setting with continuous state and node dependent costs. In
Sect. 3, we outline a solution methodology applicable to general discrete-time
dynamical systems on nodes. Section 4 presents a solution for takeover policies
for linear scalar discrete-time dynamical systems featuring quadratic costs, along
with a topology dependent analytical solution and numerical examples in Sect. 5.
The paper concludes with a discussion on future directions in Sect. 6.

2 Problem Formulation

Consider a directed multigraph G := {V,E, φ}, where V is the set of nodes with
|V | ∈ N

+, E is the set of edges (paired nodes), and φ : E → {{α, β}|α, β ∈ V 2} is
the incidence function mapping every edge to an ordered pair of nodes, defining
the connectivity of the graph. The term eα,β ∈ E represents the edges connecting
the node α ∈ V with the node β ∈ V , such that when α = β, it represents a self-
loop. We consider a single adversary, originating from any node of the graph G.
The adversary’s goal is to reach nodes within the graph which induces maximum
cost, while a defender’s mission is to hinder the adversary’s advances.

We model the actions of the players and state evolution in discrete-time,
with the variable k denoting the current time step, which takes on values from
the set K := {1, 2, . . . , L, L + 1}. We represent the current node at time k using
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1 2 3

Fig. 1. A directed multigraph consisting of 3 nodes. At time k = 1, the FlipDyn state
is α1 = 1. The actions of both players are {1, 2, 3}.

a variable αk ∈ V , referred to as the FlipDyn state. The adversary’s action is
denoted by the variable πa

k ∈ ε(αk), where the set ε(αk) is defined as:

ε(αk) := {j ∈ V |eαk,j ∈ E}.

Here, ε(αk) represents the nodes the adversary can potentially target from the
current node αk at time k, with j = αk indicating the choice to remain idle or
stay in the same node. Similarly, the defender’s action is denoted by πd

k ∈ ε(αk).
Notice that the defender’s action set is identical to that of the adversary’s, to
deter or prevent further escalation. The FlipDyn state update is based on both
the action of the defender and adversary, given by:

αk+1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

πd
k, if πd

k = πa
k,

πd
k , else if πd

k ∈ {ε(αk)|πa
k = αk},

πa
k, else if πa

k ∈ {ε(αk)|πd
k = αk},

αk, otherwise.

(1)

The FlipDyn update (1) states that if the actions of both the defender and
adversary are identical, then the FlipDyn state remains unchanged. However, if
the defender opts to choose any node while the adversary remains idle, then the
FlipDyn state transitions into the chosen node. Similarly, if the defender remains
idle while the adversary chooses any node, then the FlipDyn transitions to the
chosen node. The FlipDyn state transition can be compactly written as:

αk+1 = −αk1αk
(πa

k)1αk
(πd

k) + 1αk
(πa

k)π
d
k + 1αk

(πd
k)π

a
k + 1̄αk

(πa
k)1̄αk

(πd
k)π

d
k,

(2)

where 1αk
: ε(αk) → {0, 1} is the indicator function, which maps to one if

πd
k = αk or πa

k = αk, and maps to zero, otherwise. The term 1̄αk
is the one’s

complement of 1αk
. For illustrative purpose, consider the graph shown in Fig. 1

with the FlipDyn state at time k = 1 as α1 = 1. The FlipDyn state can transition
to the node 2, 3 or remain in node 1 based on the update equation (1).

In addition to the described graph environment, there is an underlying
dynamical system whose continuous state at time k is indicated by xk ∈ X ⊆ R

n,
where X denotes the Euclidean state space. The state transition is dependent
on the node αk+1 given by:

xk+1 = F
αk+1
k (xk), (3)
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where F
αk+1
k : X → X is the transition function for each k ∈ K and αk+1 ∈ V .

Our objective is to compute a strategy for both the players to transition the
FlipDyn state to different nodes of the graph based on the dynamics (2), (3),
takeover, and state costs. Given the initial state x1 and node α1, we pose the
node takeover problem as a zero-sum dynamic game governed by the FlipDyn
update (2) and state dynamics (3), over a finite-time L, where the defender aims
to minimize an additive cost given by:

J(α1, x1, {πa
L}, {πd

L}) = g
αL+1
L+1 (xL+1) +

L∑

t=1

gαt
t (xt) + 1̄αt

(πd
t )d

πd
t

t (xt)

− 1̄αt
(πa

t )a
πa

t
t (xt),

(4)

where gαt
t (xt) : X → R represents the cost for every FlipDyn state αt ∈ V , con-

tinuous state xt at time t ∈ K, with g
αL+1
L+1 (xL+1) : X → R representing the ter-

minal cost for each αL+1 ∈ V . The terms d
πd

t
t (xt) : X → R and a

πa
t

t (xt) : X → R

represent the instantaneous takeover costs of the defender and adversary, respec-
tively, for each t ∈ K and action πd

t , πa
t ∈ ε(αt). The defender and adversary

actions over the finite-horizon L is given by the notations {πa
L} := {πa

1 , . . . , π
a
L},

and {πd
L} := {πd

1 , . . . , πd
L}, respectively. In contrast, the adversary aims to maxi-

mize the cost function (4) leading to a zero-sum dynamic game. This formulation
characterizes the strategic interaction between the two players in the context of
a node takeover problem in a graph environment, termed as FlipDyn-G game.

We seek to find Nash Equilibrium (NE) solutions of the game (4). To guaran-
tee the existence of a pure or mixed NE takeover strategy, we expand the set of
player policies to behavioral strategies – probability distributions over the space
of discrete actions at each discrete time [32]. Specifically, let

yαk

k := {yαk

k,j |j ∈ ε(αk)},
∑

j∈ε(αk)

yαk

k,j = 1, yαk

k,j ≥ 0, and (5)

zαk

k := {zαk

k,j |j ∈ ε(αk)},
∑

j∈ε(αk)

zαk

k,j = 1, zαk

k,j ≥ 0 (6)

be the behavioral strategies for the defender and adversary, respectively, at time
instant k for the FlipDyn state αk. The takeover actions are

πd
k ∼ yαk

k , πa
k ∼ zαk

k ,

for the defender and adversary at any time k are sampled from the corresponding
behavioral strategy. The behavioral strategies are yαk

k , zαk

k ∈ Δ|ε(αk)|, where
Δ|ε(αk)| is the probability simplex in |ε(αk)| dimensions. Over the finite horizon
L, let yL := {yα1

1 ,yα2
2 , . . . ,yαL

L } ∈ Δ|ε(α1)| × Δ|ε(α2)| × · · · × Δ|ε(αL)| and zL :=
{zα1

1 , zα2
2 , . . . , zαL

L } ∈ ΔL
|ε(α1)|×ΔL

|ε(α2)|×· · ·×ΔL
|ε(αL)| be the sequence of defender

and adversary behavioral strategies. Thus, the expected outcome of the zero-sum
game (4) is given by:

JE(x1, α1, yL, zL) := E[J(x1, α1, {πa
L}, {πd

L})], (7)
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where the expectation is computed with respect to the distributions yL and zL.
Specifically, we seek a saddle-point solution (y∗

L, z∗
L) in the space of behavioral

strategies such that for any non-zero initial state x1 ∈ X , α1 ∈ V , we have:

JE(x1, α1, y
∗
L, zL) ≤ JE(x1, α1, y

∗
L, z∗

L) ≤ JE(x1, α1, yL.z∗
L).

The FlipDyn game over a graph is completely defined by the expected cost (7)
and the space of player takeover strategies subject to the dynamics in (2) and
(3). In the next section, we derive the outcome of the FlipDyn game for each
node in the graph for general systems.

3 FlipDyn-G for General Problem

3.1 Saddle-Point Value of Any Node

At time instant k ∈ K, given a FlipDyn state αk, the saddle-point value com-
prises the instantaneous state cost and an additive cost-to-go based on the
players takeover actions. The cost-to-go is determined via a cost-to-go matrix
in each of the FlipDyn state αk, represented by Ξαk

k+1 ∈ R
|ε(αk)|×|ε(αk)|. Let

V αk

k (x,Ξαk

k+1) be the saddle-point value at time instant k with the continuous
state x and cost-to-go matrix, corresponding to the FlipDyn state of αk. Let us
define a set of nodes connected to αk as, {αk, j2, j3, . . . , jm(αk)} ∈ ε(αk), where
m(αk) = |ε(αk)|. Such a set of nodes will help us define the cost-to-go matrix.
The entries of the cost-to-go matrix Ξαk

k+1 corresponding to each pair of takeover
actions are:

αk j2 . . . jm(αk)

αk

j2

. . .
jm(αk)

⎡

⎢
⎢
⎢
⎣

vαk

k+1(αk, αk) . . . . . . v
jm(αk)

k+1 (αk, jm(αk))

vj2
k+1(j2, αk) vj2

k+1(j2, j2) . . . vαk

k+1(j2, jm(αk))
. . . . . . . . . . . .

v
jm(αk)

k+1 (jm(αk), αk) vαk

k+1(jm(αk), j2) . . . v
jm(αk)

k+1 (jm(αk), jm(αk))

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
Ξ

αk
k+1

, (8)

where v
αk+1
k+1 (πd

k , πa
k) corresponds to the cost-to-go value of a FlipDyn state

αk+1 ∈ V , defined as:

v
αk+1
k+1 (πd

k , πa
k) := V

αk+1
k+1 (Fαk+1

k (x), Ξαk+2
k+2 ) + 1̄αk

(πd
k)d

πd
k

k (xk) − 1̄αk
(πa

k)a
πa

k

k (xk).

The diagonal terms in (8) correspond to the saddle-point value of the FlipDyn
states under identical defender and adversary actions. Notice, only under the
action of πd

k = πa
k = αk the takeover costs for both players are zero. The first

row of Ξαk

k+1 corresponds to the saddle-point values of FlipDyn states chosen by
the adversary, when the defender remains idle. Similarly, the first column corre-
sponds to the saddle-point value of the FlipDyn states chosen by the defender
under an idle adversary action. The remaining entries of Ξαk

k+1 correspond to
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the saddle-point value of the FlipDyn state αk with the corresponding takeover
costs. The entries of the cost-to-go matrix are constructed using the FlipDyn
dynamics (2) and continuous state dynamics (3). Thus, at time k for a given
state x and αk, the saddle-point value satisfies

V αk

k (x,Ξαk

k+1) = gαk

k (x) + Val(Ξαk

k+1), (9)

where Val(Xαk

k+1) := miny
αk
k

maxz
αk
k

yαk
T

k Xk+1z
αk

k , represents the (mixed)
saddle-point value of the zero-sum matrix Xk+1 for the FlipDyn state αk, and
Ξαk

k+1 ∈ R
|ε(αk)|×|ε(αk)| is the cost-to-go zero-sum matrix. The defender’s and

adversary’s action results in either an entry within Ξαk

k+1 (if the matrix has a
saddle point in pure strategies) or in the expected sense, resulting in a cost-to-go
from state x at time k.

With the saddle-point values established in each of the FlipDyn states αk ∈
V , next, we will characterize the NE takeover strategies and the saddle-point
values for the entire time horizon L.

3.2 NE Takeover Strategies of the FlipDyn-G game

To characterize the saddle-point value of the game, we restrict the state and
takeover costs to a particular domain, stated in the following mild assumption.

Assumption 1. [Non-negative costs] For any time instant k ∈ K, the state and
takeover costs gα

k (x), d
α
k (x), a

α
k (x), for all x ∈ X , and α ∈ V are non-negative

(R≥0).

Assumption 1 enables us to compare the entries of the cost-to-go matrix
without changes in the sign of the costs, thereby, characterizing the strategies
of the players (pure or mixed strategies). Under Assumption 1, we derive the
following result to compute a recursive saddle-point value for the horizon length
L and the corresponding NE takeover strategies for both the players in every
node of the graph environment.

Lemma 1. Under Assumption 1, the saddle-point value of the FlipDyn-G
game (7) at any time k ∈ K, subject to the FlipDyn dynamics (2) and con-
tinuous state dynamics (3) is given by:

V αk∗
k (x,Ξαk

k+1) = gαk

k + yαk∗T

k Ξαk

k+1z
αk∗
k , (10)

where yαk∗
k and zαk∗

k correspond to NE takeover policies obtained upon solving
the zero-sum matrix defined by Ξαk

k+1 (cost-constructed backward in time using
the saddle-point values at k+1) as a linear program [32]. The boundary condition
of the saddle-point value recursion (10) at k = L is given by:

Ξ
αL+1
L+2 := 0m(αL+1)×m(αL+1),∀αL+1 ∈ V. (11)
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We skip the proof of the Lemma 1 as it involves simple substitutions and
the use of recursive optimality. For a finite cardinality of the state space X ,
FlipDyn states V , and a finite horizon L, Lemma 1 yields an exact (behavioral)
saddle-point value of the FlipDyn-G game (7). However, the computational and
storage complexities scale undesirably with the cardinality of X , especially in
continuous state spaces. For this purpose, in the next section, we will provide a
parametric form of the saddle-point value especially in the case of scalar linear
dynamics with quadratic costs.

4 FlipDyn-G for scalar LQ Problems

To render a tractable solution for continuous state of the FlipDyn-G game, we
restrict ourselves to scalar linear discrete-time dynamical system with quadratic
costs (LQ problem). The discrete-time dynamics of a linear system at time
instant k ∈ K in the FlipDyn state αk+1 is given by:

xk+1 = F
αk+1
k (xk) := f

αk+1
k xk, (12)

where f
αk+1
k ∈ R denotes the state transition scalar coefficient. The stage and

takeover costs are assumed to be quadratic for each player and given by:

gαk

k (x) = x2gαk

k , dαk

k (x) = x2dαk

k , aαk

k (x) = x2aαk

k , (13)

where gαk

k ∈ R,aαk

k ∈ R,dαk

k ∈ R are non-negative (R≥0) under Assumption 1.
Under Assumption 1 for scalar dynamical systems of the form (12), we pos-

tulate a parametric form for the saddle-point value for each FlipDyn state α ∈ V
of the form:

V αk

k (x,Ξαk

k+1) ⇒ V αk

k (x) := pαk

k x2, ∀αk ∈ V, k ∈ K, (14)

where pαk

k ∈ R≥0 corresponds to a non-negative coefficient for each of
the FlipDyn states. Under the scalar linear dynamical system (12), takeover
costs (13) and the parameteric form (14), the cost-to-go matrix Ξ̂αk

k+1 can be
re-expressed as:

αk j2 . . . jm(αk)

αk

j2

. . .
jm(αk)

⎡

⎢
⎢
⎢
⎣

vαk

k+1(αk, αk) . . . . . . v
jm(αk)

k+1 (αk, jm(αk))

vj2
k+1(j2, αk) vj2

k+1(j2, j2) . . . vαk

k+1(j2, jm(αk))
. . . . . . . . . . . .

v
jm(αk)

k+1 (jm(αk), αk) vαk

k+1(jm(αk), j2) . . . v
jm(αk)

k+1 (jm(αk), jm(αk))

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
Ξ̂

αk
k+1

, (15)

where vαk

k+1(u,w) corresponds to the cost-to-go term of a FlipDyn state inde-
pendent of the term x2, defined as:

vαk+1
k+1 (πd

k , πa
k) := (fαk+1

k )2pαk+1
k+1 + 1̄αk

(πd
k)d

πd
k

k − 1̄αk
(πa

k)a
πa

k

k .
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Fig. 2. A graph consisting of N nodes .

Notice the cost-to-go entries consists of the system transition coefficients and
takeover costs, while factoring out the term x2. Building on Lemma 1, we present
the following result, which provides the NE takeover policies of both players, and
outlines the saddle-point value update of pαk

k for any FlipDyn state.

Lemma 2. Under Assumption 1, at any time k ∈ K, the saddle-point value
parameter of the FlipDyn-G game (7) for quadratic state and takeover costs (13),
subject to the FlipDyn dynamics (2) and scalar state dynamics (12), is given by:

pαk∗
k = gαk

k + yαk∗T

k Ξ̂αk

k+1z
αk∗
k , (16)

where yαk∗
k and zαk∗

k correspond to NE takeover policies obtained upon solving
the zero-sum matrix Ξ̂αk

k+1 as a linear program [32]. The boundary condition of
the saddle-point value recursion (10) at k = L is given by:

Ξ̂
αL+1
L+2 := 0m(αL+1)×m(αL+1),∀αL+1 ∈ V. (17)

Substituting the scalar state dynamics (12) along with state and takeover
costs (13) yields the NE strategies and saddle-point value parameters (16). We
skip the proof of Lemma 2 for brevity. Lemma 2 presents a complete solution for
the FlipDyn-G (7) game with NE takeover strategies independent of state of the
scalar dynamical system. In the following subsection, we will derive closed-form
expressions of the FlipDyn-G game for a special graph structure and show how
the structure represents the original FlipDyn game [10].

4.1 Dual Deter FlipDyn-G game

We examine a special case of the graph environment, termed the dual deter
model, which consists of a start and end node each connecting to only one other
node, while the remaining nodes connect to two different nodes. This model can
be viewed as a finite state Markov chain birth-death process [33]. We assume
the dual deter model has an ordered set of nodes from node 0 to N , resulting in
a total of |V | = N + 1 nodes, as illustrated in Fig. 2.

A key difference compared to the general graph model lies in the action space
of the defender and adversary. At any node αk ∈ {1, 2, . . . , N − 1}, the action
space of the adversary is πa

k := {αk, α}, α ∈ {V |α > αk}, and of the defender
is πd

k := {αk, α}, α ∈ {V |α < αk}. The action space of both the defender and
adversary in the start and end node αk = {0, N} are given as πd

k := {αk, τ} and
πa

k := {αk, τ}, where τ represents a takeover action in the node αk, preventing
transition to other nodes. Such an action space and model represents the defender
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deterring an adversary from escalating through the graph. The FlipDyn state
updates in such a dual deter model as follows:

αk+1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αk, if πd
k = πa

k|αk = {0, N},

1, else if πa
k = τ |πd

k = 0, αk = 0,
N − 1, else if πd

k = τ |πa
k = N,αk = N,

πd
k, else if πd

k = πa
k,

α, else if πd
k = α|πa

k = αk,

α, else ifπa
k = α|πd

k = αk},

αk, otherwise.

(18)

We characterize the NE strategies and saddle-point values of the dual deter
model under the assumption of a scalar linear dynamical system (12) and
quadratic costs (13) with a parameterized saddle-point value (14). Such an action
space leads to a reduced dimension of the cost-to-go matrix independent of the
state term x2 at any node αk ∈ {1, 2, . . . , N − 1}, given by:

αk α

αk

α

[
(fαk

k )2 pαk

k+1

(
fα

k

)2
pα

k+1 − aαk

k
(
f

α
k

)2
pα

k+1 + dαk

k (fαk

k )2 pαk

k+1 + dαk

k − aαk

k

]
. (19)

Similarly, the cost-to-go matrix for the start node αk = 0 independent of the
state term x2 is given by:

0 τ

0
τ

[ (
f0

k

)2
p0

k+1

(
f1

k

)2
p1

k+1 − a0k
(
f0

k

)2
p0

k+1 + d0
k

(
f0

k

)2
p0

k+1 + d0
k − a0k

]
, (20)

whereas for the end node αk = N , we have:

N τ

N

τ

[ (
fN

k

)2
pN

k+1

(
fN

k

)2
pN

k+1 − aN
k

(
fN−1

k

)2
pN−1

k+1 + dN
k

(
fN

k

)2
pN

k+1 + dN
k − aN

k

]
. (21)

The transition of the nodes in (19) follows from the FlipDyn dynamics (2).
Next, we present the NE takeover in both pure and mixed strategies of both the
players along with the saddle-point value parameter pαk

k for every node in the
dual deter model.

Theorem 1. The unique NE takeover strategies of the FlipDyn-G game (7)
at any time k ∈ K for quadratic state and takeover costs (13), subject to the
FlipDyn dynamics (18) and scalar state dynamics (12) are given by:
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Case i) - αk = 0

y0∗
k =

⎧
⎪⎪⎨

⎪⎪⎩

[
a0k

p̂k+1
1 − a0k

p̂k+1

]T

, if p̂k+1 > a0k, p̂k+1 > d0
k,

[

1 0
]T

, otherwise,

(22)

z0∗
k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[

1 − d0
k

p̂k+1

d0
k

p̂k+1

]T

, if p̂k+1 > a0k, p̂k+1 > d0
k,

[

0 1
]T

, if p̂k+1 > a0k, p̂k+1 ≤ d0
k,

[

1 0
]T

, otherwise,

(23)

and the saddle-point value parameter satisfies:

p0
k =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g0
k+(f0

k )
2p0

k+1 + d0
k − a0kd

0
k

p̂k+1
, if p̂k+1 > a0k, p̂k+1 > d0

k,

g0
k+(f1

k )
2p1

k+1 − a0k, if p̂k+1 > a0k, p̂k+1 ≤ d0
k,

g0
k + (f0

k )
2p0

k+1, otherwise,

(24)

where p̂k+1 := (f1
k )

2p1
k+1 − (f0

k )
2p0

k+1.
Case ii) - αk = {1, 2, . . . , N − 1}

yαk∗
k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[

1 0
]T

, if p̃αk

k+1 < dαk

k ,−p̌αk

k+1 < dαk

k ,

[

0 1
]T

, else if p̃αk

k+1 > dαk

k ,−p̌αk

k+1 > dαk

k ,

[
p̃αk

k+1 − aαk

k

p̃αk

k+1 + p̌αk

k+1

p̌αk

k+1 + aαk

k

p̃αk

k+1 + p̌αk

k+1

]T

, otherwise

(25)

z0∗
k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[

1 0
]T

, if − p̃αk

k+1 < aαk

k , p̌αk

k+1 < aαk

k ,

[

0 1
]T

, if − p̃αk

k+1 > aαk

k , p̌αk

k+1 > aαk

k ,

[
p̃αk

k+1 + dαk

k+1

p̃αk

k+1 + p̌αk

k+1

p̌αk

k+1 − dαk

k+1

p̃αk

k+1 + p̌αk

k+1

]T

, otherwise,

(26)
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and the saddle-point value parameter satisfies:

pαk

k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gαk

k +(fαk

k )2pαK

k+1, if
− p̃αk

k+1 < aαk

k , p̌αk

k+1 < aαk

k+1,

p̌αk

k+1 < dαk

k+1,

gαk

k + (fα
k )

2pα
k+1 + dαk

k+1, if
− p̃αk

k+1 < aαk

k , p̌αk

k+1 < aαk

k+1,

p̌αk

k+1 > dαk

k+1,

gαk

k + (fα
k )

2pα
k+1 − aαk

k+1, if
− p̃αk

k+1 > aαk

k , p̌αk

k+1 > aαk

k+1,

− p̃αk

k+1 < dαk

k+1,

gαk

k + (fαk

k )2pαk

k+1 − aαk

k+1 + dαk

k+1, if
− p̃αk

k+1 > aαk

k , p̌αk

k+1 > aαk

k+1,

− p̃αk

k+1 > dαk

k+1,

g0
k +

(fαk

k )4(pαk

k+1)
2 + aαk

k dαk

k

p̃αk

k+1 + p̌αk

k+1

+
p̃αk

k+1d
αk

k − p̌αk

k+1a
αk

k

p̃αk

k+1 + p̌αk

k+1

− (fα
k )

2pα
k+1(f

α
k )

2pα
k+1

p̃αk

k+1 + p̌αk

k+1

,

otherwise,

(27)

where

p̃αk

k+1 := (fαk

k )2pαk

k+1 − (fα
k )

2pα
k+1, p̌

αk

k+1 := (fαk

k )2pαk

k+1 − (fα
k )

2pα
k+1.

Case iii) - αk = N

yN∗
k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[

1 − aN
k

p̄k+1

aN
k

p̄k+1

]T

, if p̄k+1 > aN
k , p̄k+1 > dN

k ,

[

0 1
]T

, if p̄k+1 ≤ aN
k , p̄k+1 > dN

k ,

[

1 0
]T

, otherwise,

(28)

zN∗
k =

⎧
⎪⎪⎨

⎪⎪⎩

[
dN

k

p̄k+1
1 − dN

k

p̄k+1

]T

, if p̂k+1 > aN
k , p̂k+1 > dN

k ,

[

1 0
]T

, otherwise,

(29)

and the saddle-point value parameter is given by:

pN
k =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

gN
k +(fN

k )2pN
k+1 − dN

k +
a0kd

0
k

p̂k+1
, if p̂k+1 > aN

k , p̂k+1 > dN
k ,

gN
k +(fN−1

k )2pN−1
k+1 + dN

k , if p̂k+1 > aN
k , p̂k+1 ≤ dN

k ,

gN
k + (fN

k )2pN
k+1, otherwise,

(30)
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where p̄k+1 := (fN
k )2pN

k+1 − (fN−1
k )2pN−1

k+1 .
The boundary condition of the saddle-point value recursion (24), (27), (30)

at k = L + 1 is given by:

pαL+1
L+1 := gαL+1

L+1 ,∀αL+1 ∈ V. (31)

�

The derivation of the NE takeover policies and saddle-point value parameters
in Theorem 1 closely follows the procedure outlined in [31]. Therefore, we omit
the proofs for the sake of brevity. Theorem 1 presents a closed-form solution for
the FlipDyn-G (7) game with NE takeover strategies independent of state for
scalar linear dynamical systems. The dual deter model captures a specific struc-
ture of the general FlipDyn-G game. This structure enables us to complete the
NE strategies and saddle-point value of the game in closed-form. The following
remark indicates when the dual deter model maps to the FlipDyn model [10].

Remark 1. When the dual deter model consists of only two nodes, α = {0, 1},
the FlipDyn-G game reduces to a FlipDyn [10] model with a full state feed-
back control, with NE strategy and saddle-point value parameter as described
in (22), (23), (24), (28), (29), and (30).

Next, we illustrate the results of Lemma 2 through two numerical examples.

5 Numerical Examples

5.1 Numerical Example I

We evaluate the NE takeover strategy and saddle-point value of the FlipDyn-G
game on an epidemic dynamic model, which is a discrete-time linear model
capturing the dynamics of infection. This model can be mapped to a graph envi-
ronment with four nodes: susceptible, infected, recovered, and deceased, termed
as the SIRD model. The adversary is assumed to be the source of infection
causing transitions between nodes, while a government organization represents
the defender preventing transitions that can lead to significant losses. Typically,
epidemic models have fixed transition probabilities between nodes; however, in
this setup, transitions are governed by NE takeover policies. The SIRD model is
shown in Fig. 3a, with four FlipDyn states: susceptible (S), infected (I), recov-
ered (R), and deceased (D). Therefore, the FlipDyn state can take on the value
αk ∈ {S, I,R,D} for all k ∈ K.

This example presents only a FlipDyn dynamics, as the nodes do not have
an underlying continuous state dynamics. In this example, we will consider the
costs to be time-invariant, i.e., gα

k = gα,dα
k = dα, and aα

k = aα,∀k ∈ K and
α ∈ {S,I,R,D}. The state costs follow the order given by:

gD > gI > gS > gR. (32)
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Fig. 3. (a) An epidemic model represented as a graph with four nodes. The FlipDyn
states of the graph are susceptible (S), Infected (I), Recovered (R), and Deceased (D).
(b) Saddle-point parameters for each node α = {S,I,R,D}, over time k, with horizon
length L = 20.

The state costs (32) imply that the FlipDyn state of death (α = D) has the
highest cost, while the least is for the recovered (α = R). Similarly, the defender
and adversary takeover costs follow the order given by:

dR > dS > dI > dD, aD > aI > aS > aR. (33)

The costs used in this numerical example are:

gS = 1.5, gI = 2.2, gR = 1.0, gD = 2.5,

dS = 0.7, dI = 0.5, dR = 0.8, dD = 0.2,

aS = 0.5, aI = 0.7, aR = 0.1, aD = 0.9.

We solve for the NE takeover strategies and saddle-point value using Lemma 2.
Figure 3b shows the saddle-point value parameters pα

k , α = {S,I,R,D} for a hori-
zon length of L = 20. The saddle-point values corresponding to each of the nodes
follow the order described in (32) indicating the cost in transitioning to the state
α = D is the highest. We also observe that the value of the node α = I remains
close to the other node states α = {R,D} reflective of the defender policy to
prevent transition to α = D.

The defender and adversary policies for the state α = I are shown in Figs. 4a
and 4b. The state α = D is a sink state, meaning once you transition to it,
you cannot transition to other states. We illustrate the policy for the state α =
I as it allows both players to transition to any state. The defender’s policy
involves transitioning only to the susceptible and recovered states, avoiding the
death state or remaining in the infected state. In contrast, the adversary has
a high probability of transitioning to the death state and a low probability of
transitioning to the recovered state, with zero probability of transitioning to the
susceptible and infected states.
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Fig. 4. For the node α = I, the NE policy of the (a) defender and (b) adversary, where
yI

k(α), z
I
k(α), α = {S,I,R,D} corresponds to the probability of selecting the takeover

node α, given αk = I.

5.2 Numerical Example II

We evaluate the NE takeover strategy and saddle-point value of the FlipDyn-G
game on a stock market Markov chain [34], with node dynamics. This model
consists of three nodes: bull market, bear market, and stagnant market. An
investor is represented as an adversary attempting to capitalize on the market,
while the defender represents the rest of the players in the market. A bull,
bear, and stagnant market represent an increase, decrease, and steady market
growth, respectively. A graphical representation of this stock market model is
shown in Fig. 5a, with three FlipDyn states: bull (Bu), bear (Br), and stagnant
(St). Therefore, the FlipDyn state can take on the value αk ∈ {Bu,Br,St}
for all k ∈ K. For this example, we will assume the costs and dynamics are
time-invariant, i.e., gα

k = gα,dα
k = dα, and aα

k = aα, fαk

k = fαk ,∀k ∈ K and
α ∈ {Bu,Br,St}. The state costs and node dynamics follow the order given by:

gBu > gBr > gSt, fBu > fBr > fSt. (34)

The state costs and dynamics (34) indicate the FlipDyn state of the bull
market (α = Bu) has the highest value with the least being the stagnant market
(α = St). Similarly, the defender and adversary takeover costs follow the order:

dBu > dSt > dBr, aBr > aSt > aBu. (35)

The dynamics and takeover costs used in this numerical example are:

fBu = 1.1, fBr = 0.95, gSt = 1.0,

dBu = aBr = 0.90, dBr = aBu = 0.50, dSt = aSt = 0.75.

The FlipDyn state costs are time-varying and indicate in Fig. 5b. We solve for the
NE takeover strategies and saddle-point value using Lemma 2. Figure 5c shows
the saddle-point value parameters pα

k , α = {Bu,Br,St} for a horizon length of
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Fig. 5. (a) A stock market Markov chain model represented as a graph with three
nodes. The FlipDyn states of the graph are Bull (Bu), Bear (Br), and Stagnant (St).
(b) The state costs gα

k , α ∈ {Bu, Br, St}. (c) Saddle-point parameters for each node
α = {Bu, Br, St}, over time k, with horizon length L = 20.

Fig. 6. For the node α = Br, the NE policy of the (c) defender and (d) adversary,
where yBu

k (α), zBu
k (α), α = {Bu, Br, St} corresponds to the probability of selecting the

takeover node α, given αk = Bu.

L = 20. At the start of the horizon, the difference between the saddle-point
values follows the order (34). However, as the horizon increases, the differences
between saddle-point values of the FlipDyn states become indistinguishable.

We only illustrate the defender and adversary policy for the state α = Bu
shown in Figs. 6a and 6b, respectively. The policy trends of both players are
quite similar, with a high probability of being in the bull market, followed by the
stagnant market and bear market. The investor (adversary) indicates a higher
probability of being in the bull market and maintains this probability throughout
the time horizon. In contrast, the defender exhibits a relatively lower probability
of being in the bull state, with the highest probability gradually shifting to
transitioning to the stagnant state over time.

This numerical example illustrates the use of the FlipDyn model in graphs
to determine node takeover strategies for each player. It provides insights into
system behavior and stability, which are useful for designing costs that impact
takeover policies.
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6 Conclusion

In this paper, we have introduced the FlipDyn-G framework, extending the
FlipDyn model to a graph-based setting where each node represents a dynamical
system. Our model captures the strategic interactions between a defender and an
adversary who aim to control node state in a graph to minimize and maximize
a finite horizon sum cost, respectively.

Our contributions include modeling and characterizing the FlipDyn-G game
for general dynamical systems and deriving the corresponding Nash Equilibrium
(NE) takeover strategies. Additionally, for scalar linear discrete-time dynamical
systems with quadratic costs, we derived NE takeover strategies and saddle-point
values that are independent of the continuous state of the system. For a finite
state birth-death Markov chain, we derived analytical expressions for these NE
strategies and values. Through numerical studies involving epidemic models and
linear dynamical systems with adversarial interactions, we have illustrated the
applicability and effectiveness of our proposed methods. The results demonstrate
that our approach can robustly determine optimal strategies for both players,
enhancing the resilience and security of cyber-physical systems (CPS).

Future work will focus on extending this framework to more complex topolo-
gies and multi-agent systems.
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Abstract. Anonymous messaging and payments have gained momen-
tum recently due to their impact on individuals, society, and the digital
landscape. Fuzzy Message Detection (FMD) is a privacy-preserving pro-
tocol where an untrusted server performs message filtering for its clients
in an anonymous way. To prevent the server from linking the sender and
the receiver, the latter can set how much cover traffic they should down-
load along with genuine messages. Clearly, this could cause unwanted
messages to appear on the user’s end, thereby creating a need to balance
one’s bandwidth cost with the desired level of unlinkability.

Previous work showed that FMD is not viable with selfish users. In
this paper, we model and analyze FMD using the tools of empirical
game theory and show that the system needs at least a few altruistic
users to operate properly. Utilizing real-world communication datasets,
we characterize the emerging equilibria, quantify the impact of different
types and levels of altruism, and assess the efficiency of potential out-
comes versus socially optimal allocations. Moreover, taking a mechanism
design approach, we show how the betweenness centrality (BC) measure
can be utilized to achieve the social optimum.

Keywords: Anonymous Messaging · Privacy · Fuzzy Message
Detection · Altruism · Game Theory · Best-Response Dynamics

1 Introduction

Anonymous messaging is a critical enabler in the landscape of digital privacy,
as it allows individuals to send and receive information without revealing their
identities. By doing so, it ensures a degree of confidentiality by providing free-
dom of expression and freedom of association. Such mechanisms foster trust
and autonomy for users seeking advanced confidentiality in their communica-
tions and financial transactions. Anonymous messaging is realized by various
cryptographic protocols, which offer a shield against surveillance and unautho-
rized access. One acclaimed cryptographic solution is Fuzzy Message Detection
(FMD) [5].
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Fig. 1. FMD failure: Recipient D has seemingly maximum protection because it down-
loads all messages as cover traffic, yet its genuine message (white envelope) is not
downloaded by any other participants, so no relationship anonymity is provided.

In a fully relationship-anonymous setup, even intended recipients remain
unaware of messages sent to them without decrypting the entire traffic, causing
computational inefficiency and wasting bandwidth. Indeed, if messages (transac-
tions) are continuously posted to a public board (e.g., a permissionless blockchain
ledger), the user (with limited resources) must scan the entire chain to pick the
messages intended for them.

FMD is a relatively new privacy-enhancing cryptographic technique with sev-
eral desired privacy properties, such as relationship anonymity (i.e., unlinkabil-
ity). FMD provides a workaround by enabling users to delegate the detection of
incoming traffic to an untrusted server in an efficient and privacy-hardened way.
It allows users, when online, to download a mixed set of messages in which some
are addressed to the user some to others, based on their chosen false-positive
detection rate. The cryptographic method ensures that the server cannot dis-
tinguish between true and false-positive messages, effectively using the latter as
cover traffic. The FMD protocol is illustrated in Fig. 1.

This promising technique has garnered attention for its adaptability in vari-
ous scenarios; see, e.g., the Niwl anonymous messaging app [27], which planned
to implement FMD. Concerning anonymous payments, there have been efforts
to incorporate FMD into privacy-preserving cryptocurrencies (such as Penum-
bra [41]) and into privacy-enhancing overlays (such as Zeth [36]). However, since
the initial hype, none of these use cases appear to have come through. (We hope
our results can restart the discussions around the real-life viability of FMD.)

Additionally, despite its seemingly attractive properties and fleeting com-
mercial interest, the privacy protection that FMD provides is far from air-tight.
Seres et al. showed that statistical attacks can break FMD’s guarantees con-
cerning relationship anonymity, recipient unlinkability, and temporal detection
ambiguity [39]. In terms of relationship anonymity, they also showed that selfish
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users had no incentive to maintain non-zero cover traffic, as it is cost-bearing
and their own protection level is independent of it; see Fig. 1.

This scenario falls under the tragedy of the commons [15], in the sense that
every user benefits from consuming a public good (i.e., privacy) but is not willing
to contribute to it (also referred to as free-riding). Many socio-technical systems
were shown to exhibit this type of behavior, from peer-to-peer file-sharing [22]
through collaborative physical and cybersecurity [25,26] to pandemic response
measures [35]. The economic literature proposes the internalization of external-
ities and/or appropriate regulatory measures to resolve such situations; how-
ever, altruistic behavior also has the potential to alleviate the ineffective equi-
librium [4,14].

We believe that altruistic behavior is especially realistic in privacy-preserving
communications, where the actual stakeholders are often members of the same
community; it has been shown that individuals in tightly-knit groups (and soci-
eties with a strong sense of duty) routinely choose to act for the good of others at
a cost to themselves [45]. Interestingly, awareness-raising campaigns (e.g., related
to privacy around the introduction of the GDPR or social distancing during the
COVID-19 pandemic) try to make people internalize their externalities, changing
their mental models [38].

Our Contribution. In this paper, we investigate and quantify the impact of
altruism in anonymous messaging networks. Specifically, we seek answers to the
following research questions:

RQ1 How do the type of altruism, the number of altruistic players, and the
network topology affect the equilibrium outcome?

RQ2 How can a central planner (e.g., messaging app provider) set the false
positive rates to achieve social optimum? Is there an easily computable
metric that can be an efficient proxy for the optimal false positive rate in
a realistic setting?

Our results advance the state of the art in multiple aspects, as we made the
following contributions.

– Adhering to the principles of empirical game-theoretic analysis [44], we a)
focus on the FMD technology to construct meaningful utility functions, b) use
real-world datasets of communication networks and patterns, and c) employ
heuristic methods to analyze game outcomes.

– We extend the selfish game in [39] with different notions of altruism, where
some nodes care about the welfare of their neighbors (local altruism) or all
other nodes (global altruism).

– We show that a) the system reaches a viable, non-trivial equilibrium with
only a few altruistic nodes, and b) we characterize emerging equilibria with
respect to efficiency and the impact of different types and levels of altruism.

– We find that a central mechanism designer (e.g., the developer/maintainer
of a messaging app) could use betweenness centrality as a proxy metric for
assigning optimal false positive rates.
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The rest of the paper is organized as follows. Section 2 summarizes the rele-
vant background and related work. Section 3 defines the altruistic game model.
Section 4 describes our analysis approach. Section 5 presents our findings. Finally,
Sect. 6 outlines future work and concludes the paper. Note that an extended ver-
sion of our paper is available online1 [11].

2 Background

Here, we establish the preliminaries regarding game theory and the FMD mech-
anism and give a brief overview of related work.

2.1 Preliminaries

Game Theory. A non-cooperative game model consists of players, strategies,
utility functions, and the mechanics of game playing. In this paper, we study
one-shot games, where the complexity comes from the large number of players
and the underlying network structure.

A Nash Equilibrium (NE) [32] occurs when none of the players can unilater-
ally deviate from their chosen strategy without incurring lower utility. Notably,
such NE always exists if each player can choose from a finite set of actions. In
contrast, the Social Optimum (SO) is the set of strategies where the overall util-
ity of all the agents is maximized. The ratio between this and the worst and best
NE is called Price of Anarchy (PoA) [23] and Price of Stability (PoS) [2], respec-
tively. These benchmarks express how the overall system performance degrades
due to the selfish behavior of its agents.

Relaxations of both NE and SO exist, which are computationally more feasi-
ble to obtain. Within the paper, we utilize the ε-Equilibrium concept [37], where
agents may gain a limited utility by deviating from their current strategy. Sim-
ilarly, we define ε-SO, where no user’s strategy could be changed in a way that
would result in a larger than ×(1 − ε) overall improvement. One way how such
equilibria might be found is via the Best Response Mechanism (BRD) [37], where
the players are iteratively changing their actions to maximize their payoffs. In
particular, if the game is a potential game [31], i.e., the incentive of all players
to change their strategy can be expressed using a single function, then the BRD
is ensured to converge to an NE.

Finally, altruism refers to a player’s willingness to incur personal costs to
benefit others, even when it conflicts with their self-interest [40]. It involves
acting for the greater good, potentially leading to cooperative behavior that can
influence outcomes in strategic interactions [10].

Fuzzy Message Detection. In a sense, Fuzzy Message Detection (FMD) [5]
is an extension of asymmetric encryption, where the public keys are replaced
with so-called “detection keys”. In the classical setup, the users share with the
server their public keys, and the server sends back to them the ciphertexts,
1 https://cloud.crysys.hu/s/fmdgt.

https://cloud.crysys.hu/s/fmdgt
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which are encrypted with them. In contrast, besides matching with genuine
ciphertexts, detection keys would also match other ciphertexts (encrypted with
different public keys). This way, the genuine and the cover traffic would be
indistinguishable for the server without access to the private key. Consequently,
the server may send the same ciphertext to several users, unaware of who was
the originally intended recipient. Yet, besides the genuine messages, the clients
cannot decrypt other messages, as they do not hold the appropriate private keys.
Hence, their sole purpose is to provide cover traffic. As such, FMD prevents
the leakage of metadata to some extent by creating ambiguity in the server
concerning the destination of each message.

The amount of cover traffic is determined by the false positive detection rate
corresponding to each detection key. It determines the probability that a single
non-matching ciphertext will be “detected” as matching. Formally, FMD pro-
vides Correctness (every message reaches its intended target), Fuzziness (targets
receive additional messages proportional to their false positive detection rate),
and Detection Ambiguity (only the targets can distinguish between genuine and
cover messages). Through this paper, we follow the author’s recommendation
(regarding the efficiency of implementation) and set all false positive detection
rates to be a power of two. We refer to Appendix B of our technical report [11]
for further details.

2.2 Related Work

FMD Alternatives. Since the introduction of FMD, a handful of works have
attempted to tackle similar problems, such as Private Signaling (PS) [30] or
Oblivious Message Retrieval (OMR) [28]. Other related problems were studied
within the Private Information Retrieval (PIR) [7] literature. Note that this list
is not exhaustive; we merely want to indicate our analysis may also generalize
to other systems.

PS provides recipient privacy and key unlinkability, but its constructions rely
upon strong environmental constraints, such as trusted hardware and two com-
municating but non-colluding servers. Although a recent work [19] improved its
scalability, trusted hardware is still assumed. OMR provides denial-of-service
resistance besides the previously mentioned properties but comes with a heavy
computational burden. Although a recent work [29] extended OMR to group mes-
sages, the computational burden only increased. Although our analysis is specific
to FMD, the game-theoretic framework could be adapted to other anonymous
messaging protocols or even generalized further; see Sect. 6 for details.

Free-Riding in Distributed Systems. The free-riding problem, emerging
inefficient equilibria, and potential remedies have been studied extensively in
distributed systems. One of the most scrutinized domains in this aspect is peer-
to-peer systems [9]. In fact, the impact of disincentivized nodes was investigated
in multiple real-world systems such as Gnutella [1], Napster [13], and BitTor-
rent [21]. Another much-researched domain, where the public good to be con-
sumed is physical or cybersecurity, is interdependent security. Starting from the
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seminal works of Kunreuther and Heal [25] and Varian [42], there has been a line
of research on interdependent security games [26]. Furthermore, falling closer to
our work, contributor incentives have been taken into account in the design of the
Tor anonymous communication network [20]. Specifically, the balance between
bandwidth cost and privacy protection was studied in [46].

FMD Analysis. This paper was inspired by Seres et al. [39], which lays the
preliminary groundwork for studying anonymous messaging through the lens of
game theory. The authors studied FMD from multiple angles and concluded it
performs weakly in nearly all privacy aspects. Specifically, they assumed selfish
participants and showed that setting the false positive detection rates to zero is
an NE, which rendered the entire FMD protocol useless. Their analysis did not
consider altruism and assumed homogeneous users with random false positive
detection rates.

In this paper, we study the impact of altruistic nodes in the FMD anonymous
messaging system, where altruism invokes higher bandwidth costs corresponding
to cover traffic. In fact, our results show a phenomenon similar to [42]: the
effort induced in equilibrium is highly concentrated at key nodes while others
contribute little; yet, the system is functional as opposed to one with only selfish
participants [39].

3 Model

In this section, we recap the game-theoretic model of the FMD anonymous mes-
saging system introduced in [39] and extend it with altruism. Following [39], we
denote with u the users and the number of their genuine incoming messages with
inu. The total number of messages in the system is M while the false positive
detection rate of u is pu, which implies that the expected number of messages
assigned to u by the server is inu + pu · (M − inu).

3.1 The Selfish Game

Seres et al. [39] also defined αu as the event of a relationship anonymity breach
caused by a single message, where the server can link the known sender to recip-
ient u. This event occurs if no other user downloads that particular message pro-
viding cover traffic, with a probability of αu =

∏
v∈N/{u}(1−pv). Consequently,

the probability of a breach from any incoming message is 1−(1−αu)inu , i.e., the
complement of a single breach happening but for all of the incoming messages.

Using this quantity, they defined the FMD game, where the players are the
participants in the FMD protocol, and their strategies are their false positive
detection rates (corresponding to the amount of their generated cover traffic).
The game focuses on relationship anonymity, i.e., a privacy breach occurs when
the server learns that two users are indeed communicating.

Definition 1 (FMD Game). The FMD Game is a tuple 〈N , Σ,U〉, where the
set of players is N = {1, . . . , U}, their actions are Σ = {p1, . . . , pU} where
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pu ∈ {2−1, 2−2, . . . , 2−10, 0} for 1 ≤ u ≤ U , and their utility functions are
U = {ϕu(p1, . . . , pU )}Uu=1 such that for 1 ≤ u ≤ U :

ϕu(·) = −L · (1 − (1 − αu)inu)
︸ ︷︷ ︸

CP
u

− f · (inu + pu · (M − inu))
︸ ︷︷ ︸

CBW
u

(1)

where L is the cost of a privacy breach, and f is the bandwidth cost of retrieving
a single message from the server.

To ease readability, we denote the first privacy-related expression of the equa-
tion as CP

u and the second bandwidth-related part as CBW
u . One would expect

a clear trade-off between privacy and bandwidth efficiency; however, Eq. 1 high-
lights that a larger false-positive rate pu corresponds only to higher bandwidth
(as more messages need to be downloaded from the server), but not (necessarily)
to lower privacy loss. Indeed, upon closer inspection, it can be seen that CP

u is
independent of the user’s own action pu. In fact, this renders the entire FMD
protocol obsolete, as no rational user would opt-in to utilize any cover traffic.

Theorem 1 (Seres, Pejó, and Burcsi [39]). The only NE for the FMD Game
is where no one utilizes any cover traffic, i.e., pu = 0 for all 1 ≤ u ≤ U .

3.2 The Altruistic Game

As a consequence of this simple theorem, FMD is not viable with only selfish
users and no incentive re-design. (Note that the latter could take the form of
payments or rewards, similar to peer-to-peer systems [18] or recent federated
learning schemes [16]. This direction could be important for future work.)

However, the presence of altruistic users could change the game (both literally
and metaphorically). As pointed out in Sect. 1, it is plausible among privacy-
conscious individuals in the same community, i.e., users of the same messaging
app, to behave altruistically [45]. We consider altruism in the form of extending
the utility function to encapsulate the selflessness of the players; they could act
in a way that benefits others at a cost to themselves.

Definition 2 (Altruistic player). A player is altruistic if its utility is directly
affected by the welfare of others.

As opposed to [3], where the entire social welfare is appended to the utility
function of the altruistic players, we add only the privacy loss CP

u of other players
as the motivating factor behind altruism (and the community effect) is privacy
itself. This third term in the utility function is added through a multiplicative
factor referred to as altruistic constant au, indicating the level of altruism (or
selfishness) of the respective user. For a selfish player u, au = 0. On the other
hand, if u is altruistic, this value would be positive, i.e., au > 0. In a sense, au

captures a player’s willingness to cooperate for the greater good (social welfare).
An intuitive expectation is that ”enough“ altruism would shift the selfish NE
towards the SO [3].
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The FMD game is played on a communication graph where a weighted
directed edge e(u, v) exists if user u sends at least one message to user v. We
consider the network topology and the corresponding communication pattern as
given: no strategic decisions are made regarding network formation.

In the context of anonymous messaging (and potentially other applications
involving an underlying network), altruism itself could have multiple mean-
ings. We consider two kinds of altruism: local (i.e., caring about the welfare
of your contacts) and global (i.e., caring about the welfare of the whole society).
Although there could be other alternative interpretations, we believe these two
have intuitive and inherent significance in our application scenario.

Local Altruism. In the context of FMD, local altruism pertains to cost-bearing
actions that improve the welfare of directly connected nodes.

Definition 3 (L-FMD Game). The L-FMD Game extends the FMD game
with the cost of local altruism in the utility function for 1 ≤ u ≤ U :

ϕu(·) = −CP
u − CBW

u − au ·
∑

v:v∼u

CP
v

︸ ︷︷ ︸
CLA

u

(2)

where au is the altruistic constant and v ∼ u means that user v has a connection
with user u, i.e., there is message flow (in any direction) between them. The
direction is relaxed as the model regards relationship anonymity (transitive).

Global Altruism. In the context of FMD, global altruism acknowledges other-
regarding behavior affecting the welfare of any node in the communication
network. Such behavior recognizes the ultimate interdependence of online pri-
vacy [6].

Definition 4 (G-FMD Game). The G-FMD Game extends the FMD game
with the cost of global altruism in the utility function for 1 ≤ u ≤ U :

ϕu(·) = −Cpriv
u − CBW

u − au ·
∑

v∈N/{u}
CP

v

︸ ︷︷ ︸
CGA

u

(3)

Intuitively, altruistic players may be able to compensate for the lack of cover
traffic from selfish nodes by setting their false positive detection rate high,
thereby improving the privacy of their immediate neighborhood (local) or the
whole society (global).

4 Experiments

As altruistic FMD games do not lend themselves easily to theoretical analysis
and we wanted to quantify the effect of various system parameters, we took an
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empirical approach [44]. Here, we detail i) the real-world communication pattern
datasets used, ii) the best-response dynamics (BRD) algorithm implemented,
and iii) the importance of choosing the initial candidate strategy distribution
for the BRD. Our code, datasets, and results are available online2.

4.1 Datasets

We simulate FMD game instances on data from real messaging systems3. The
first is the College Instant Messaging dataset [33], referred to as message; it
contains the instant messaging network of college students from the University of
California, Irvine. The graph consists of 1, 899 nodes (students) and 59, 835 edges
(messages) spanning 193 days. The second one is the EU E-mail dataset [34],
denoted as mail ; it contains a collection of emails between members of a large
European research institution. The network consists of 986 nodes (researchers)
and 332, 334 edges (emails) over 803 days. Note that mail represents a much
denser communication network compared to message.

While running the BRD algorithm, we realized that we had to ease the com-
putational burden of our experiments. Therefore, we “halved” both graphs: we
ordered the nodes by degree and discarded every second node along with any
edge connected. The corresponding statistics can be found in Appendix C of
our technical report [11]. We conjecture that betweenness centrality captures
the “importance” of a node well in this context; we define this measure here for
further use.

Definition 5 (Betweenness Centrality (BC) [12]). The betweenness cen-
trality for each vertex is the number of shortest paths (from the set of all possible
shortest paths between all node pairs) that pass through the vertex.

4.2 Best-Response Dynamics

Applying the BRD to a potential game will always yield an NE; this was also
true for the selfish FMD games, revealing a unique all-zero equilibrium [39]. In
contrast, the inclusion of altruism modifies the objective function such that it no
longer constitutes a potential function. Moreover, the altruism term might add
local minima to the objective function; thus, the BRD might stop at multiple
different equilibria, depending on the initial state. In this paper, we utilize the
ε-BRD [37], which works in a sequential manner where, at each step, a single
player changes its strategy, and each time, its chosen strategy value (false-positive
detection rate pu) can be incremented (decremented). To simplify computations,
we discretize and bound the value set such that pu ∈ {0, 2−10, . . . , 2−1}, in
accordance with the recommendation of the creators of FMD [5]. For simplicity,
we also restricted the possible values for the altruistic constant au; in a single
experiment, all altruistic actors are characterized by either au = 0.1 or au = 1,

2 https://github.com/m9framar/FMD-GT.
3 http://snap.stanford.edu/temporal-motifs/data.html.

https://github.com/m9framar/FMD-GT
http://snap.stanford.edu/temporal-motifs/data.html
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respectively. We set ε = 10−5 for all experiments. Note that both L-FMD and
G-FMD are defined as one-shot games; the BRD algorithm is just a tool to find
the ε-NE.

Definition 6 (ε-BRD (Maximum Gain) [37]). This algorithm is a slight
modification of the original BRD, where in one iteration, only a single node (the
one corresponding to the highest utility gain) updates its strategy with a single
increment/decrement until no player can increase its payoff by at least ε.

4.3 Initial Strategy Candidates for BRD

We experimented with various initial false positive detection rate settings to
ensure the comprehensive exploration of the search space and find all possible
ε-NE for both altruism types. We also re-used the same approach to establish
the social optimum. We used three different strategies for initial settings.

1. Thresholding: players’ initial candidate strategy depends on a predeter-
mined value of a node property, either betweenness centrality or degree num-
ber. The false positive detection rate is set to either 2−1 or 2−10 for the nodes
above the threshold. Note that a zero threshold still allows for 0 initial false
positive detection rates for nodes with 0 property values.

2. Sorting: players are assigned an initial candidate strategy based on their rel-
ative position in an ordered list according to a node property, either between-
ness centrality or degree number. Nodes with the highest values are assigned
2−1, nodes with the lowest values are assigned 2−10, while the initial candidate
strategies of in-between nodes are calculated based either on linear (equal car-
dinality of buckets) or exponential “intrapolation” (size of the buckets follow
[1, 2, 4, . . . ], where the last bucket consists of the rest of the users).

3. Random: similarly to [39], nodes are randomly assigned a possible strategy.

We set the threshold for the normalized betweenness centrality to 0.01 and
for degree values to 4. With these values the computational burden for the
experiment was still manageable, while they landed themselves on non-trivial
results.

The idea behind the uniform initial strategies 2−1 and 2−10 for Thresholding
is that ε-BRD could possibly reach the same final strategy distribution, but from
the opposite extremum of the search space (a unique equilibrium for the given
parameter settings). On the other hand, if they converge to different equilibria,
that could form the basis for PoA and PoS calculations. The intuition behind
Sorting is the “importance” of nodes could be a good proxy for an efficient
strategy profile.

5 Results

In this section, we first establish the social optimum of the selfish FMD game
(not given in [39]), and then we study altruistic L-FMD/G-FMD games with
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respect to both equilibrium and social optimum. For all experiments, we set
the bandwidth cost of a single message to be f = 1 and the privacy loss L =
|E|−maxu[inu]+1, which yields Lcollege = 14797 and Lmail = 77947, respectively.
As stated before, we used ε = 10−5 for the ε-BRD and studied the impact of
altruism by varying the altruism type (local or global) and the altruism constant:
au ∈ {0.0, 0.1, 1.0}.

5.1 Social Optimum

SO Without Altruism. To facilitate comparability with [39] and to provide an
easily understandable baseline, we consider a simple scenario where a Mechanism
Designer could only set the false positive rates in a uniform manner (same value
for all nodes). Figure 2 shows that the corresponding social welfare is the highest
with p = 2−6 and p = 2−7 for the message and mail dataset respectively. It can
be seen that larger cover traffic is optimal for the sparser graph; this is intuitive as
it is easier to infer relationships with fewer nodes and communication flows. Note
how applying zero cover traffic (which is the NE without altruism) corresponds
to the lowest social welfare.

SO With Altruism. Concerning the altruistic game, the social welfare for the
message dataset is maximized with the strategy profile shown in Fig. 3. The top
row corresponds to global and the bottom to local altruism, with the left column
au = 0.1 and the right column au = 1.0. It is visible that the more prominent
the altruism, the more cover traffic is optimal in the system (from bottom to top
and from left to right). Notably, the (local, 0.1) setting yields an SO very close
to the homogeneous selfish SO (2−6 for all). Also, all nodes contribute in every
setting.

Fig. 2. SO without altruism, uniform false positive rates.
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Results are similar for the mail dataset with peaks one step lower (not
shown); this is in line with the homogeneous selfish SO (2−7 for all). Moreover,
all initialization strategies yielded near-identical optimal strategy profiles.

5.2 Equilibrium Analysis

Here, we present various ε-equilibria we found; while there are many potential
equilibria in these large games, our extensive experiments enabled us to identify
the types of equilibria that emerge from altruistic FMD games. We discuss these
through examples grouped by the BRD initialization strategy used to discover
them, allowing us to reflect on the computational aspect organically. Curiously,
the Sorting initialization scheme resulted in NE that i) were not among the best
or worst and ii) did not provide additional insights; hence, we omit them.

Random Initialization. The BRD for the mail dataset converges from a ran-
dom distribution as shown in Fig. 4. The top row corresponds to global and the
bottom to local altruism, with the left column au = 0.1 and the right column
au = 1.0. Similarly to the SO, the resulting NE means more cover traffic when
altruism is more prominent, i.e., global vs. local, and a higher altruistic constant
au = 1.0. Local altruism encourages the majority of players not to contribute,
while a small subset of nodes (12 or 16, depending on the level of altruism) pro-
vides maximum cover traffic. Note that the global altruistic NE is closer to the
corresponding SO (see Fig. 3), still with some nodes providing maximum cover
traffic but with all nodes contributing.

Thresholding Initialization (Node Degree). Recall that we expected this
initialization strategy to reveal extreme equilibria. Figure 5 shows the results
for the message dataset with global altruism using the node degree of 4 as
the separation threshold. The top row corresponds to a high pu = 2−1 and
the bottom to a low pu = 2−10 initial setting for non-selfish users, with the
left column au = 0.1 and the right column au = 1.0. Again, there is a small
set of users in NE providing maximum cover traffic (leftmost column in every
subfigure), while there are a lot of free-riders (rightmost column). When the BRD
is initialized with minimal cover traffic, the NE is extremely polarized (bottom
row); while with high initial settings, around half of the population is settled at
medium equilibrium values. This result highlights the existence of very different
equilibria in the same scenario. Results for the other dataset and local altruism
are similar in nature (not shown).

Thresholding Initialization (Betweeness Centrality). Figure 6 displays
the results for the mail dataset with global altruism using betweenness cen-
trality of 0.01 as the separation threshold. The top row corresponds to global
and the bottom to local altruism, with the left column au = 0.1 and the right
column au = 1.0. From the figure, it is evident that only a few nodes are above
the threshold, and even fewer will provide maximum cover traffic in equilibrium.
Note that the convergence is the shortest with this initialization method: the
BRD algorithm finishes after relatively few steps. Note that the resulting equi-
librium is again a polarized one, with a few players shouldering the burden of
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Fig. 3. Strategy profile in SO, message dataset, top: global altruism, bottom: local a.,
left: au = 0.1, right au = 1.0.

Fig. 4. Strategy profile in ε-NE, random init., mail dataset, top: global altruism, bot-
tom: local a., left: au = 0.1, right au = 1.0.

Fig. 5. Strategy profile in ε-NE, threshold init. with node degree of 4, message dataset,
top: init. p0 = 2−1, bottom: init. p0 = 2−10, left: au = 0.1, rightau = 1.0.
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Fig. 6. Strategy profile in ε-NE, threshold init. with betw. centr. of 0.01 and init.
p0 = 2−1, mail dataset, top: global altruism, bottom: local a., left: au = 0.1, right
au = 1.0.

Fig. 7. Aggregated betw. centr. of users
with NE strategy pu = 2−1, left: au =
0.1, right:au = 1.0.

Fig. 8. Composition of overall cost:
privacy vs. bandwidth, global altruism,
left (blue): mail, right (orange): mes-
sage. (Color figure online)

Fig. 9. Equilibrium efficiency: PoA and PoS, local and global altruism, left: mail, right:
message, odd: au = 0.1, even: au = 1.0.
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Table 1. “Empirical CDF” percentiles of aggregated betw. centr. and costs over users
ordered by decreasing cover traffic for SO and best-case NE.

DS A SolutionA. model Priv Cost BW CostBC 10th%BC 50th%BC 90th% Initial setup

M
es

sa
ge

0.1
SO

Local -7694.99 -127389.5 0.8343 1.1985 1.2108 bc, Threshold,all from -10
Global -3880.18 -134877.0 0.8343 1.1985 1.2108 bc, Threshold,all from -10

NE
Local -427417.87 -82507.0 0.8343 1.1985 1.2108 random 2
Global -117871.68 -97305.0 0.8343 1.1985 1.2108 bc, Threshold,all from -10

1.0
SO

Local -1948.76 -142394.5 0.8343 1.1985 1.2108 ’bc’, ’Threshold’,’all from -10’
Global -501.74 -157243.0 0.8343 1.1985 1.2108 ’bc’, ’Threshold’,’all from -1’

NE
Local -29810.20 -112517.0 0.8343 1.1985 1.2108 random 0
Global -14699.95 -120205.5 0.8085 1.1985 1.2108 ’degree’, ’Threshold’,’all from -10’

M
ai

l

0.1
SO

Local -26872.01 -792918.5 0.6891 1.1407 1.2064 ’bc’, ’Threshold’,’all from -10’
Global -13757.53 -831782.0 0.6329 1.1407 1.2064 ’bc’, ’Threshold’,’all from -1’

NE
Local -1540593.96 -554842.5 0.6508 1.1407 1.2064 random 5
Global -809226.32 -594074.0 0.65 1.1407 1.2064 ’bc’, ’Threshold’,’all from -10’

1.0
SO

Local -6718.36 -873060.3 0.7233 1.1407 1.2064 ’bc’, ’Threshold’,’all from -10’
Global -1740.72 -950986.5 0.6802 1.1407 1.2064 ’bc’, ’Threshold’,’all from -1’

NE
Local -107338.36 -712944.0 0.6809 1.1407 1.2064 random 8
Global -53449.33 -753186.0 0.6644 1.1407 1.2064 ’bc’, ’Threshold’,’all from -10’

cover traffic. Also, note that we experienced similar behavior when using the
same initialization strategy in other experiments.

Motivated by this result, we wanted to characterize how important the small
set of nodes providing maximum equilibrium cover traffic, pu = 2−1 is (we refer
to these nodes as max nodes). As betweenness centrality is a valid node impor-
tance measure when it comes to a communication network [8], we computed
the aggregated betweenness centrality of max nodes across all discovered equi-
libria for the same dataset. Figure 7 shows how these partial aggregates stack
up against the network aggregate under both local and global altruism regimes
(mail dataset, normalized betweenness centrality values, left: au = 0.1, right
au = 1.0). We can make three observations: i) max nodes (sometimes only 4%
of the population) correspond to a large proportion (up to 44%) of betweenness
centrality, ii) local altruism results in a stronger concentration of betweenness
centrality in max nodes, and iii) stronger altruism (higher au) also implies more
profound concentration).

We refer the interested reader to Appendix D in our technical report [11]
for more results. Interestingly, a large majority of efficient equilibria (i.e., with
low social cost) are characterized by such a strong concentration of betweenness
centrality. Note that the Threshold initialization strategy based on betweenness
centrality resulted in equilibria with low social cost and the shortest convergence
time.

5.3 Equilibrium Versus Social Optimum

The defining difference between the equilibrium and social optimum strategy
profiles is the presence (or absence) of free-riders. Also, SO corresponds to a
larger amount of aggregate cover traffic.
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Fig. 10. “Empirical CDF” of aggregated betw. centr. over users ordered by decreasing
cover traffic for SO and best-case NE.

Another somewhat expected result is the change in the composition of overall
cost: while in an NE, the privacy cost dominates (e.g., >50% in case of low
altruism), at the SO, the bandwidth cost dominates (<90%). This is visualized in
Fig. 8 for the global altruism regime; left (blue) and right (orange) denote results
for the mail and message dataset, respectively. It is also clear that stronger
altruism, i.e., au = 1.0, reduces the proportion of the privacy cost. In the case of
local altruism, these trends are even more pronounced (see Appendix D in our
technical report [11].

Figure 10 combined with Table 1 show the change of concentration of aggre-
gated betweenness centrality in the best NE and at SO over the nodes ordered
by their chosen strategies (decreasing order of false positive detection rate/cover
traffic). It is clear that already the top 10% of contributors correspond to 60–70%
of total betweenness centrality, making it a decisive factor in practical optimal
mechanism design. Note that the curves are similar regardless of the dataset,
altruism level, or chosen BRD initialization strategy.

Price of Anarchy and Stability. Price of Stability (PoS) and Price of Anarchy
(PoA) are valuable for comparing NE and SO as they illustrate the efficiency of
strategic decisions: PoS measures the best-case efficiency loss, while PoA assesses
the worst-case loss when players act in their self-interest. Figure 9 shows PoA and
PoS values for both altruism models, where the worst and best NE were chosen
from the equilibrium outcomes of all related experiments. The leftmost (right-
most) two plots correspond to the mail (message) dataset, where odd (even)
plots belong to low (high) au values.

Generally speaking, PoA values are quite high, while PoS values are com-
parably much lower. The impact of different communication networks is also
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apparent: the PoA is much lower with high but local altruism in the message
network compared to the mail network (fourth plot vs. second plot), while the
opposite is true for high global altruism. We leave it to future work, whether
this can be attributed to the density difference between the two graphs.

These results imply that in order for the FMD system to achieve near-optimal
or optimal operation, a mechanism designer (e.g., the app developer) should
either i) be able to set the cover traffic parameters centrally or ii) re-design
the system incentives in a way to elicit a favorable equilibrium, similar to the
best-case NE in our experiments. With regard to the central optimal design, one
should perform a network analysis to determine the participants’ betweenness
centrality parameter and set the cover traffic parameters accordingly (see Fig. 3).

6 Conclusion

Fuzzy Message Detection has attracted significant academic and some commer-
cial interest since its inception. However, Seres et al. [39] raised some concerns
about the privacy guarantees that the Fuzzy Message Detection [5] scheme,
gaining popularity and is being integrated into real-world apps, provides. They
conjectured that with selfish users, the system is not viable. In contrast, in this
paper, we showed that the presence of a few altruistic users may alleviate this
situation and yield a viable equilibrium. By means of empirical game-theoretical
analysis, utilizing real-world communication datasets, we i) characterized the
emerging equilibria, ii) quantified the impact of different types and levels of altru-
ism, and iii) assessed the efficiency of potential outcomes versus socially optimal
allocations. Furthermore, taking a mechanism design approach, we showed how
the betweenness centrality measure could be utilized to achieve the social opti-
mum.

Practical Considerations. It is not trivial how a messaging app provider can
facilitate (near-)optimal operation in a real-life deployment. First of all, the
system is dynamic, with nodes and communication patterns changing, even on
short timescales. Second, directly computing betweenness centrality is not fea-
sible owing to the inherent properties of the anonymous messaging technology.
However, a solution based on secure multi-party computation [24] could be inte-
grated into the messaging logic. Third, the provider could set favorable homoge-
neous default values (see Fig. 2), which then would be left unchanged with high
probability [43].

Limitations and Future Work. We have barely scratched the surface of
altruistic anonymous messaging systems. First, we investigated a simple model
where players have perfect knowledge and perfect rationality and play a one-
shot game. We only provided empirical results, limited the parameter space,
and restricted ourselves to two datasets in order to cope with computational con-
straints. Bounded rationality, imperfect knowledge, and the temporal dynamics
of users and communication patterns could call for more sophisticated modeling
and simulation studies. Furthermore, concepts from cooperative game theory
could be used to integrate rewards into the system.
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Second, we decided to focus our analysis on FMD (and its claimed relation-
ship anonymity), a promising technology gaining popularity. While the utility
functions studied are FMD-specific, we believe our approach could be gener-
alized to other anonymous messaging/payment protocols, also providing group
communication functionality. Even more ambitious and potentially more impact-
ful, we may be able to generalize our empirical game-theoretical analysis to any
hiding-in-the-crowd type privacy-preserving mechanism where a user’s privacy
inherently depends on other users’ actions [6,17].

Acknowledgements. Project no. 138903 has been implemented with the support
provided by the Ministry of Innovation and Technology from the NRDI Fund, financed
under the FK_21 funding scheme.
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Abstract. Model explanations improve the transparency of black-box machine
learning (ML) models and their decisions; however, they can also enable privacy
threats like membership inference attacks (MIA). Existing works have only ana-
lyzed MIA in a single interaction scenario between an adversary and the target
ML model, missing the factors that influence an adversary’s capability to launch
MIA in repeated interactions. These works also assume the attacker knows the
model’s structure, which isn’t always true, leading to suboptimal thresholds for
identifying members. This paper examines explanation-based threshold attacks,
where an adversary uses the variance in explanations through repeated inter-
actions to perform MIA. We use a continuous-time stochastic signaling game
to model these interactions. Unaware of the system’s exact type (honest or mali-
cious), the adversary plays a stopping game to gather explanation variance and
compute an optimal threshold for membership determination. We propose a
sound mathematical formulation to prove that such an optimal threshold exists,
which can be used to launch MIA and identify conditions for a unique Markov
perfect equilibrium in this dynamic system. Finally, we evaluate various factors
affecting an adversary’s ability to conduct MIA in repeated settings through sim-
ulations.

1 Introduction

Understanding machine learning (ML) models’ decisions is challenging due to their
complex, black-box nature. This has led to developing various model explanation tech-
niques [23,32,36]. However, these explanations also expose an attack surface that
can be exploited for inferring private model information [34] or launching adversarial
attacks [19,38]. One feasible attack is Membership Inference Attacks (MIAs), where
adversaries discern the membership status of specific data points in the training set.
MIAs are broadly classified into binary classifier-based [35], metric-based [22], and
differential comparison-based attacks [18].

This work focuses on metric-based MIAs, particularly those leveraging model
explanations. Shokri et al. [34] showed that variance in gradient-based explanations

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Sinha et al. (Eds.): GameSec 2024, LNCS 14908, pp. 263–283, 2025.
https://doi.org/10.1007/978-3-031-74835-6_13
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could indicate membership status when compared to a threshold, although their analy-
sis was limited to a single query instance. This work examines how explanation variance
evolves under repeated adversarial queries formulated by a strategic adversary and sent
to the system. Our motivation stems from a recognized gap in the existing literature.
While many works [27–29,42] have leveraged explanations to design security attacks,
none have extensively analyzed the effects of repeated interactions on explanation vari-
ance. This understanding is crucial for developing robust defenses against MIAs, which
aim to exploit the information in the system’s explanations.

Specifically, this work analyzes how explanation variance evolves with repeated
queries from a strategic adversary aiming to find the optimal explanation variance
threshold. Additionally, while it is straightforward to compute an optimal threshold if
the training set membership is known [22], the question arises: how can an explanation-
based threshold attack be executed when an adversary lacks knowledge of the model
and its training process?

An adversary that iteratively interacts with the target system to compute the expla-
nation variance threshold raises several questions: What is the optimal duration for this
interaction? Can the system detect and prevent such malicious interactions? How can
the system serve both honest and malicious users effectively? While honest and mali-
cious users may formulate similar queries, the emphasis lies on the malicious user’s
intention to initiate MIA. Thus, the value of an explanation for an honest end-user is
based on its relevance, explaining the model’s decision for the query. However, a mali-
cious end-user evaluates an explanation’s value based on the information it contains for
potential exploitation in launching MIAs. Intuitively, the duration, pattern, and structure
of such repeated interactions could impact the degree of private information disclosure
by the system. The current understanding of this process is limited, especially when
dealing with a strategic adversary that aims to minimize attack costs. At the same time,
a system seeks to protect privacy without fully knowing the end-user type.

We aim to bridge this research gap by using game theory to model interactions
between an adversary and an ML system in the above context. In particular, we make
the following contributions in this paper:

1. We model the interactions between an ML system and an adversary as a two-player
continuous-time signaling game, where the variance of the generated explanations
(by the ML system) evolve according to a stochastic differential equation (SDE).

2. We then characterize the Markov Perfect Equilibrium (MPE) of the above stochastic
game as a pair of optimal functions U(π) and L(π), where U(π) is the optimal
variance path for the explanations generated by the system, L(π) is the optimal
variance path for the explanations given by the system to an adversary after adding
some noise, and π is the belief of the system about the type of the adversary.

3. We evaluate the game for different gradient-based explanation methods, namely,
Integrated Gradients [41], Gradient*Input [37], LRP [3] and Guided Backpropaga-
tion [40]. By means of experiments using benchmark datasets, we demonstrate that
the capability of an adversary to launch MIA depends on factors such as the expla-
nation method, input dimensionality, model size, and number of training rounds.
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2 Background and Preliminaries

2.1 Gradient Based Explanations

For some input data point −→x ∈ R
n and a classification model Fθ, an expla-

nation method H simply explains model decisions, i.e., it outputs some justifica-
tion/explanation of why the model Fθ returned a particular label y = Fθ(−→x ). In this
work, we consider feature-based explanations, where the output of the explanation func-
tion is an influence (or attribution) vector and where the element Hi(−→x ) of the vector
represents the degree to which the ith feature influences the predicted label y of the data
point −→x . Specifically, we consider the Gradient method [37], Integrated Gradient (IG)
method [41], Layer-wise Relevance Propagation (LRP) [3], and Guided Backpropaga-
tion [40]. For more details, please refer to the extended version of the paper [21].

2.2 Membership Inference Attacks

In membership inference attacks (MIA), an adversary with a target dataset Xtgt ⊂ Rn

aims to identify which data points belong to a target model’s training set Xtr. The
adversary predicts membership by assessing if each point −→x ∈ Xtgt is also in Xtr.
Intuitively, a low model loss typically translates to a prediction vector dominated by
the true label, resulting in a high variance, which may indicate model certainty [34]
and, thus, the data point (under consideration) as a member of the training dataset.
The variance of the feature-based explanation to determine data point membership is as
follows:

MembershipExpl,τE
(−→x ) =

{
True, V ar(HGRAD(−→x )) ≤ τE

False, otherwise

where the variance of some vector −→v ∈ R
n is calculated as: V ar(−→v ) =

∑n
i=1(vi −

μ−→v )2, whereμ−→v = 1
n

∑n
i=1 vi.

2.3 Geometric Brownian Motion

A Geometric Brownian Motion (GBM) is a continuous-time stochastic process com-
monly used to model the evolution of a variable that exhibits random fluctuations over
time. A general GBM state process st satisfies the stochastic differential equation:

dst = a(st, u(st, t), t)stdt + b(st, u(st, t), t)stdWt

where, a(st, u(st, t), t) and b(st, u(st, t), t) are the drift and volatility parameters of
the state process st, respectively, Wt is a standard Brownian motion with mean = 0
and variance = t, and u(st, t) is the control. In this paper, an adversary aims to reach
a variance threshold to launch explanation-based attacks by repeatedly interacting with
the ML model using appropriate queries and historical interaction data. Here, we model
the evolving explanation variance EXv as a GBM due to its ability to capture periodic
and random fluctuations in a non-negative continuous-time process.
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2.4 Optimal Control and the Stopping Problem

In a two-player game, each agent makes an optimal control decision to either continue
or stop interacting with the other agent. Such problems involving optimal control are
usually modeled using Bellman’s equation and solved with dynamic programming. Let
ui(st, t) represent the control of agent i when the system is in state st at time t. The
value function, denoted by Hi(st, t), represents the optimal payoff/reward of the agent
i over the interval t = [0, T ] can be written as:

Hi(st, t) = max
ui

∫ T

0

f(st, u(st, t), t)dt

Where f(st, u(st, t), t) is the instantaneous payoff/reward a player can get given the
state (st) and the control used (u) at time t. the Bellman equation is a partial differential
equation or PDE, referred to as the Hamilton Jacobi Bellman (HJB) equation, and can
be written as:

rH(st, t) = f(st, u
∗, t) +

∂H

∂t
+

∂H

∂st
a(st, u

∗, t) +
1
2

∂2H

∂s2t
b(st, u

∗, t)2

Where u∗ = u(st, t) is the optimal value of the control variable. Using the above
equation, we represent the value functions of both the adversary and the system. The
optimal control u (for both the adversary and the system) is binary: u = 1means “stop”
interacting, and u = 0 means “continue” the interaction.

Stopping Problem: A stopping problem models the decision to continue an activity for
an instantaneous payoff f(st, u(st, t), t) or stop for a termination payoff λ(st, T ). It is
determined based on the payoff he/she is expected to receive in the next instant. The
stopping rule for the state boundary value s∗

t at which an agent decides to stop and get
the termination payoff is given by:

u(st, t) =

{
stop, st >= s∗

t

continue, st < s∗
t

In other words, when the agent decides to stop, he/she gets:

H(st, T ) = λ(st, T ) ∀st ≥ s∗
t

Value Matching and Smooth Pasting Conditions: Two boundary conditions are
required to solve the HJB equation outlined above, First, value matching condition tells
an agent that if they decide to stop (at that defined boundary), then the termination
payoff equals the continuation payoff. It is given by:

H(s∗
t , t) = λ(s∗

t , t) ∀t
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Second, the smooth pasting condition ensures a smooth transition at the stopping
boundary. Intuitively, it helps pin the optimal decision boundary, s∗

t and is given by:

Hst
(s∗

t , t) = λst
(s∗

t , t) ∀t

where Hst
(s∗

t , t) is the derivative of H(s∗
t , t) with respect to the state st. If one or both

conditions are unsatisfied, stopping at the boundary s∗
t can’t be optimal. Therefore, an

agent should continue and again decide at the next time instant.

3 Game Model

Next, we present an intuitive description of the problem followed by its formal setup as
a signaling game. Further, we also characterize the equilibrium concept in this setup.

3.1 Intuition

We consider a platform, the system, offering an ML model and feature-based expla-
nations as a black-box service. End-users request labels and explanations but cannot
download the model. The system interacts with two types of users, honest and mali-
cious, without knowing their type. Honest users seek explanations for their queries,
while malicious users exploit explanation variance to conduct MIAs without detection.

The malicious end-user or an adversary interacts repeatedly with the system
to obtain explanations for their formulated queries, leveraging prior variance history
modeled with GBM. Explanation-based MIAs rely on explanation variance thresh-
olds [34], making GBM a suitable model for this variance. GBM captures historical
data integration and ensures that explanation variance stays positive, reflecting periodic
and random fluctuations. Note: Our goal is to establish mathematical proof of an opti-
mal explanation variance threshold that enables an adversary to launch MIAs. Thus,
we are not concerned about how an adversary models the query space. The malicious
end-user strategically decides when to stop interacting with the system to achieve
their attack objective, modeled as a continuous-time signaling game. If the system
fails to detect the malicious behavior and considers it honest, this is termed “pooling” or
“on-equilibrium path” behavior. Deviations from this behavior are termed “separating”
or “off-equilibrium path” behavior. Throughout the game, the malicious end-user
aims to conduct a threshold-based MIA by leveraging accumulated information (labels
+ explanations) up to that point.

More specifically, the malicious end-user decides whether to continue querying
for explanations or to stop and attack the system to avoid detection. Conversely, the
system, upon receiving requests, must decide whether to continue providing explana-
tions and how much noise to add or to block the end-user based on an optimal vari-
ance path U(π). Note: The system has imperfect information about the end-user’s
type. Thus, it determines the explanation’s noise level based on its Bayesian prior or
belief (π).

Based on this stopping game formulation, we structure the model payoffs for both
the system and the end-users (malicious and honest). Additionally, according to
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each interaction instance between the system and the end-user, we formulate the
noise and the stopping responses. As mentioned before, the added noise/perturbation
to the generated explanation is based on the system’s belief pertinent to the activity
history of the end-user. For an honest end-user, the explanation’s value lies in
explaining the model’s decision, but for a malicious end-user, its value lies in the
exploitable information for launching MIAs. In this preliminary effort, we model inter-
actions between a single end-user and the system in a stochastic game-theoretic
framework, addressing two key questions: When does a malicious end-user stop
and compromise the system? How does the system strategically block malicious
end-users while continuing to assist honest ones?

3.2 Setup and Assumptions

We model the above scenario as a two-player, continuous-time, imperfect-information
game with repeated play. This framework allows for modeling how a malicious
end-user may deviate from pooling behavior (stopping time) at any point and how
the system may detect it. Using GBM to model explanation variance involves abrupt
transitions, making continuous-time modeling more effective for its evolution. Due to
their ability to capture such dynamics effectively, continuous-time frameworks are com-
monly chosen in literature for problems involving stopping times. The game has two
players: Player 1 is the end-user, of privately known type Θ → {h,m} (i.e., honest
or malicious), who wants to convince Player 2 (i.e., system) that he/she is honest. The
game begins with nature picking an end-user of a particular type, and we analyze
repeated play between this end-user (selected by nature) and the system, which
occurs in each continuous-time, t ∈ R. As the system has imperfect information
about the type of end-user, it assigns an initial belief π0 = Pr(Θ = h). We assume
both players are risk neutral, i.e., indifferent to taking a risk, and each player discounts
payoffs at a constant rate r. Variance (EXv

t ) computed for an explanation generated by
an explanation method of the system follows a GBM, and is given by:

dEXv
t = μEXv

t dt + σEXv
t dWt (1)

where, μ is the constant drift and σ > 0 is the constant volatility of the variance process
EXv

t , and EXv
0 = exv

0 > 0. Wt is a standard Brownian motion with mean = 0 and
variance = t. To ensure finite payoffs at each continuous time t, we assume μ < r. The
state of the game is represented by the process (EXv

t , πt), where πt is the belief of the
system about the type of the end-user at time t.

The system wants to give informative or relevant explanations to the honest end
-user, but noisy explanations to the malicious end-user. Hence, depending on the
system’s belief about the type of the end-user, it will decide how much noise (per-
turbation) to add to each released explanation, according to the generated variance. Let
U(πt) denote the optimal variance path (or functional path) for the system - a non-
increasing cut-off function which tells the system the optimal explanation variance
computed for an explanation generated by an explanation method and L(πt) denote the
optimal explanation variance path for the end-user - an increasing cut-off function
which tells the end-user the optimal explanation variance for the explanation given
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by the system at given belief πt. To simplify the resulting analysis, we assume that
the explanations variance computed by the system and explanations variance com-
puted by the end-user are just different realizations of the explanation variance pro-
cess EXv

t . We denote exv
sy,t and exv

eu,t as the system’s and end-user’s realization
of the process EXv

t , respectively. Moreover, as the system would add some calcu-
lated noise to the generated explanation based on its Bayesian belief, we assume that
U(πt) ≥ L(πt), ∀πt. From this point onwards, any reference to an end-user implies
a malicious end-user unless stated otherwise, as we are only interested in modeling
the interactions between a malicious end-user and the system. Next, we outline
key model parameters before discussing equilibrium in the proposed game model.

Information Environment: Let Ft = σ({EXv
s } : 0 ≤ s ≤ t) be the end-user’s

information environment, which is the sigma-algebra generated by the variance process
EXv . In other words, Ft represents the information contained in the public history of
the explanation variance process. The system’s information environment is denoted
by F+

t = σ({EXv
s , φs} : 0 ≤ s ≤ t), where EXv

s is the variance process representing
the history of explanations variance and φs is the stochastic process representing the
historical activity of the end-user. If ρ is the time that end-user decides to stop,
then φt = ρ if ρ ≤ t and ∞ otherwise.

Strategies: Next, let us outline the strategy space for both the end-user and the
system.

– end-user: We define strategies only for the malicious end-user (type m), as
they are the ones incentivized to launch explanation-based MIAs. The malicious
end-user uses a randomized strategy: at each time t, they either continue inter-
acting with the system or stop querying to attack. Their strategy depends on the
history of variance in the explanations provided by the system; hence it is a collec-
tion of Ft - adapted stopping times {φt} such that φt = ρ if ρ ≤ t and ∞ otherwise.

– system: We assume the system plays a pure stopping time (τ t) strategy to block
a malicious end-user. Continuous interaction is a default action to provide model
predictions, and their explanations are implicit for the system. Its strategy depends
on the evolution of the explanation variance process EXv and the record of the
end-user’s querying activity. Hence, the strategy space of the system is a col-
lection of F+

t - adapted stopping times {τ t}.

We use a path-wise Cumulative Distribution Function (CDF), represented as Rt0
t , to

characterize how fast the computed variance at a given time t is trying to reach the
variance threshold (defined later). We compute this CDF from the probability density
function (pt(exv

sy,t)) of the GBM, given by:

pt(exv
sy,t) =

1√
2πtσexv

sy,t

exp

(
− [ln(exv

sy,t) − (μ − σ2)t]2

2σ2t

)
,

where, exv
sy,t ∈ (0,∞). In other words, the CDF (Rt0

t ) will give the probability of how
close the computed explanation variance is to the explanation variance threshold at time
t starting from the explanation variance computed at time t0, i.e., exv

sy,0.
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Beliefs: Given information F+
t , the system updates its beliefs at time t from time

t0 < t using Bayes’ rule shown below. It is defined as the ratio of the probability of the
honest end-user sending queries to the system (set to 1) to the total probability of
honest end-user and malicious end-user sending queries to the system.

πt =

{
1

1+(1−πt0 )R
t0
t

, if πt0 > 0 and ρ > t. (i)

0, if ρ ≤ t or πt0 = 0. (ii)

Bayes’ rule (i) is used when the end-user has not stopped communicating with
the system (ρ ≥ t) and the initial belief of the system about the end-user’s type
is also not zero. However, if the system has already identified the end-user’s type
as m or the end-user has already stopped communicating with the system and gets
detected by it, then system’s belief πt will be zero, as indicated in (ii).

Table 1. Flow Payoff Coefficients

Before Detection After Detection

Pooling Separation Starts Detection and Block (Game Ends)

end-user, type m P Mm
NS −k

end-user, type h P P P

system re DΘ
NS DΘ

B

Payoffs: Table 1 summarizes the flow payoff coefficients assumed in our game model.
The system earns a reward of DΘ=m

B = kEXv
t for detecting and blocking the

malicious end-user. The end-user’s type (malicious) is immediately revealed at
this time, thus a cost of −k is incurred by the end-user. In case of an interaction
with an honest end-user, the system will always earn a payoff of reEXv

t , i.e.,
DΘ=h

NS = reEXv
t and DΘ=h

B = reEXv
t , while the honest end-user always earns a

reward of PEXv
t in each stage of the game. In case of a malicious end-user who

keeps communicating with the systemwithout being detected i.e., pools with the hon-
est end-user, he/she receives a payoff (relevant explanation variance information) of
PEXv

t . Prior to detection, if the malicious end-user stops and is able to compromise
the system, then the system will have to pay a lump-sum cost of DΘ=m

NS = −d
′
and

the malicious end-user will earn Mm
NS = (Mm + d

′
)EXv

t , where MmEXv
t is the

gain which relates to the explanation variance information gained from the system,
d

′
EXv

t is the benefit (can be monetary) achieved after attacking the system. Mali-
cious end-user will also incur cost of deviation d. We make the following assump-
tions about the payoff coefficients: We assume that DΘ=m

B = kEXv
t > reEXv

t , as
the system will gain more in successfully preventing the attack from the malicious
end-user. When the malicious end-user decides to stop and attack the system
and is not successful in compromising the system, then PEXv

t ≥ MmEXv
t (d

′
= 0)

as the system has not yet blocked the malicious end-user and because of the cost
of deviation.
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3.3 Equilibrium Description

A Markov Perfect Equilibrium (MPE) consists of a strategy profile and a state process
(EXv, π) such that the malicious end-user and the system are acting optimally,
and πt is consistent with Bayes’ rule whenever possible (in addition to the require-
ment that strategies be Markovian). A unique MPE occurs when the two types of
end-users display pooling behavior.

Given this equilibrium concept, our main result is the characterization of querying
activity of the malicious end-user and detection (stopping) strategies by the system
in a unique equilibrium. We assume that a decision to stop querying (i.e., deviating from
honest behavior) is the last action in the game taken by the (malicious) end-user.
This decision allows the end-user to either achieve the target of compromising the
system and then getting blocked by it or getting blocked without reaching this target at
all. In either case, the system’s belief about this end-user will jump to πt = 0. The
end-user has no further action, and the game reduces to a straightforward stopping
problem for the system i.e., the system decides when to stop the game. In that case,
the continuation payoffs from that point on can be interpreted as the termination payoffs
of the original signaling game.

Next, consider the state of the game before the end-user deviates/reveals and
before the system’s block action. Since malicious end-user plays a mixed strategy
that occurs on-equilibrium path, system’s belief about the end-user evolves over
time. Thus, a unique MPE consists of a state variable process (EXv

t , πt) and two cutoff
functions, a non-increasing variance function U(πt) for the system and an increasing
variance function L(πt) for the end-user, where

– The system immediately blocks the end-user if exv
sy,t ≥ U(πt), i.e., τ =

inf{t >= 0 : exv
sy,t ≥ U(πt)}.

– The malicious end-user keeps querying for explanation (thus, its variance),
whenever exv

eu,t < L(πt) and mixes between querying and not querying when-
ever exv

eu,t ≥ L(πt), so that the curve {(L(π), π) : π ∈ [0, 1]} serves as a reflecting
boundary for the process (exv

eu,t, πt).

We call such a unique MPE equilibrium a (U,L) equilibrium. The first condition
defines an upper boundary which tells the system that if an explanation variance
value exv

sy,t at time t (corresponding to a query sent by the end-user) is greater

,

, e
xv ( )

( )

After This Point, the System Will 
Block the Malicious End-user

After this Point, Malicious 
End-user Can Successfully 
Compromise the System

Fig. 1. Illustration of a continuous path analysis ofU(π) andL(π) in Markov Perfect Equilibrium
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than or equal to this boundary (U(πt)), then the end-user is trying to compromise the
system. In this case, the system should block the end-user. The second condition
above guides the behavior of the malicious end-user. Function L(πt) represents the
upper-bound of the target explanation variance value the malicious end-user wants
to achieve given a certain belief πt at time t. When the explanation variance value
corresponding to a query by an end-user is less than this boundary function, i.e.,
exv

eu,t < L(πt), then it is strategically better for the malicious end-user to keep
querying (i.e., looks honest from system’s perspective). However, if exv

eu,t ≥ L(πt)
then the malicious end-user has an incentive to stop querying. For the malicious
end-user, this condition also represents that it is near to the desired (or target) vari-
ance threshold value - one more step by the malicious end-user can either lead to
success (compromise of the system) or failure (getting blocked by the system before
achieving its goal).

To understand the MPE structure, consider the current belief, πt. If the com-
puted explanation variance is close to the threshold, the system should block the
end-user suspicious of moving toward the model’s classification boundary. This
cutoff for the variance is a non-increasing function of π because, by definition, the
end-user is less likely to be honest when the variance value is sufficiently close to the
threshold value and πt is large. Thus, when the threshold value becomes greater than or
equal to the optimal function U(πt) at any time t, system will block the end-user.
This is intuitively shown in Fig. 1, where uth represents the variance threshold for an
explanation generated by the system and lth represents the variance threshold for the
explanation after the textttsystem adds noise based on its belief, which can be given to
the end-user. [0, uth] or [0, lth] represents the pooling region where an MPE can
occur, if end-user is not blocked by the system.

4 Equilibrium Analysis

Next, we try to analyze conditions under which a unique MPE exists in the game
described above, i.e., we try to construct a (U,L) equilibrium by finding conditions
under which optimal functions L(πt) and U(πt) exist.

High-Level Idea: As mentioned in Sect. 3, an MPE is defined as a pair of functions
L(πt) and U(πt). Thus, we first need to show that these two optimal functions exists.
To prove that L(πt) and U(πt) exist, we prove the continuity and differentiability prop-
erties of L(πt) (Theorem 1) and U(πt) (Theorem 2) in the belief domain (πt ∈ [0, 1]).
As we have assumed that the system plays a pure strategy, we consider that U(πt)
(for the system) is optimal, and show that it exists and is continuous. However, com-
puting an optimal L(πt) is non-trivial, as we have assumed that the end-user plays
a randomized strategy. Therefore, to compute L(πt), we first construct two bounding
functions L+(πt) (upper) and L−(πt) (lower) and show that such functions exists (in
Lemmas 3 and 4, respectively). To compute these functions we use the boundary condi-
tions (Sect. 2.4) at the decision boundaries, i.e., Pooling, Separating, and Detection and
Block (outlined in Table 1) and the value functions defined below. We then show that
as πt increases, L+(πt) and and L−(πt) will converge in the range (0, uth) (Lemma 1)
or (0, lth) (Lemma 2) as we have considered that an MPE occurs when both types of
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end-user pool. Finally, we show that the first intersection point (root) of L+(πt) and
L−(πt) is a unique MPE, if the end-user is not blocked by the system before that
point. At these decision boundaries, both players decide to either continue or stop.

4.1 Value Functions

As mentioned earlier, we are considering an equilibrium that occurs when both types of
end-user pool, i.e., exv

eu,t is strictly below L(πt). In this pooling scenario, no infor-
mation becomes available to the system about the type of the end-user; thus, belief
(πt) remains constant. Hence, we write the value functions for both the players condi-
tioned on no deviation by the end-user. As we consider an infinite horizon in our
game, there is no known terminal (final) value function. Hence, these value functions
are independent w.r.t. t ∈ R, as t singularly has no effect on them. The end-user’s
value function (F ) should solve the following HJB equation representing his/her risk-
less return:

rF (exv
eu

, π) = μexv
eu

F
′
exv

eu
(exv

eu
, π) +

1
2
σ2(exv

eu
)2F

′′
exv

eu
(exv

eu
, π) + ψexv

eu

where F
′
exv

eu
and F

′′
exv

eu
are the first and second order partial derivative of the value

function F (exv
eu

, π) w.r.t. exv
eu
, respectively, and, μ and σ are the drift/mean and the

variance/volatility of the variance process EXv
t , respectively. ψ is the payoff coefficient

which depends on the stage payoffs of the end-user, as represented in Table 1. The
solution to the above equation can be represented as:

F (exv
eu

, π) = A1(π)(exv
eu
)β1 + A2(π)(exv

eu
)β2 +

ψexv
eu

r − μ

for some constants A1(π) and A2(π), where β1 > 1 and β2 < 0 are the roots of the
characteristic equation [9]. Similarly, the system’s value function V (exv

sy
, π) should

satisfy the following equation, conditioned on exv
eu

< L(π) and π staying constant:

rV (exv
sy

, π) = μexv
sy

V
′
exv

sy
(exv

sy
, π) +

1
2
σ2(exv

sy
)2V

′′
exv

sy
(exv

sy
, π) + ψexv

sy

where V
′
exv

sy
and V

′′
exv

sy
are the first and second order partial derivative of the value func-

tion V (exv
sy

, π) w.r.t. exv
sy
, respectively. As before, ψ is the payoff coefficient which

depends on the stage payoffs of the system as shown in Table 1. The solution to the
above equation can be represented as:

V (exv
sy

, π) = B1(π) × (exv
sy
)β1 + B2(π)(exv

sy
)β2 +

ψexv
sy

r − μ

for some constantB1(π) andB2(π). We will use different boundary conditions to deter-
mine A1(π), A2(π), B1(π) and B2(π). Then, we will use these conditions to determine
U(πt) and L(πt).
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4.2 Analytical Results

We aim to compute the system’s threshold uth (Lemma 1) and the end-user’s
threshold lth (Lemma 2). These thresholds define the region for a potential MPE in the
game if the necessary conditions are satisfied. These lemmas help determine if a unique
MPE exists. Due to space constraints, we could not add all the proofs here. Thus, please
find proofs and other details in the Appendix of the extended paper version [21].

Lemma 1. There exists a positive upper bound uth on the variance of an explanation
generated by an explanation method representing the maximum variance value that can
be reached for the query sent by the end-user.

Lemma 2. There exists a positive upper bound lth on the variance of an explanation
given by the system to the end-user representing maximum variance value needed
to be reached by the end-user to compromise the system.

We aim to characterize the optimal cutoff functions: the system’sU(πt) (orU(π)) and
the end-user’s L(πt) (or L(π)). These functions represent the game’s MPE and help
the system and the end-user to play optimally in each game stage. For example, if
the system doesn’t have any knowledge of U(πt), then it won’t know the range of the
variance values being computed for the explanations, which are given to the end-user
after adding some noise based on its belief. Hence, an adversary can easily compromise
the system. In contrast, L(πt) function knowledge will guide an adversary on how to
compromise the system optimally. For that reason, we first prove that U(πt) exists
and is non-increasing and continuously differentiable (Theorem 1).

Theorem 1. U(π) is non-increasing and continuously differentiable function in
domain [0, 1] if and only if either β2β1J

‘(π, t)β2−1 ≤ β1β2J
‘(π, t)β1−1 or β2(β1 −

1)J ‘(π, t)β2−1 ≤ β1(β2 − 1)J ‘(π, t)β1−1, where J(π, t) = L(π)
U(π) .

To prove L(π) (Theorem 2) exists and is increasing and continuously differentiable,
we first characterize an explanation variance path L+(π) (Lemmas 3), which represents
the maximum variance values that can be computed by the end-user for the given
explanations, and a variance path L−(π) (Lemma 4), which represents the minimum
variance values for the explanations given by the system to the end-user. We write
three equations each for L+(π) and L−(z) according to the value matching, smooth
pasting, and the condition in which the variance of the explanation received is oppo-
site of what end-user expected. Then, we demonstrate that both these functions are
increasing and continuously differentiable. The purpose for doing this is to use these
lemmas to show that as π → 1, both L+(π) and L−(π) starts to converge and becomes
equal to L(π) after some point.

Lemma 3. L+(π) is a well-defined, increasing, continuous and differentiable function
in domain [0, 1] if and only if λ

′
(L+(π), π) > 0 and P > 0, where λ() is the termina-

tion payoff if the end-user decides to deviate and attack the system.

Lemma 4. L−(π)) is a well-defined, increasing, continuous and differentiable function

in domain [0, 1] if and only if either (∂A+
1 (z)
∂π L−(π)β1 + ∂A+

2 (π)
∂π L−(π)β2) < 0 or

(A+
1 (π)β1L

−(π)β1−1 + A+
2 (π)β2L

−(π)β2−1) < 0.



Towards a Game-Theoretic Understanding of Explanation-Based MIA 275

Theorem 2. L(π) is a well-defined, increasing, continuous and differentiable function
domain [0, 1] if and only if either λ

′
(L(π), π) > 0 and P > 0.

Finally, we show that such a point whereL+(πt) and L−(πt) converge (or intersect)
exists, and thus, a unique MPE (Theorem 3) exists in the game.

Theorem 3. A unique MPE or a point, ς = λ(L+(π),π)×(r−μ)
P×L−(π) , exists in the game where

the two curves L+(π) and L−(π) starts to converge, if and only if β2
ςβ2+1 ×[

L+(λ
′ − P

r−μ ) − β1(λ − PL+

r−μ )
]

≥ β1
ςβ1+1

[
β2(λ − PL+

r−μ ) − L+(λ
′ − P

r−μ )
]
.

5 Experimental Setup

We use the Captum [20] framework to generate four explanation types: GradientInput,
Integrated Gradients, LRP, and Guided Backpropagation. Next, we use PyTorch frame-
work to conduct the training and attack-related experiments. GradientInput serves as
our baseline to compare the results of the other explanation methods. We assume that
when the game ends, both the system and the end-user will have access to their
optimal strategies, uth and lth, respectively. Thus, when the game ends, an adversary
can use its optimal strategy and optimal threshold to conduct MIA, or a system can
use its optimal strategy and optimal threshold to protect against MIA. As a result, we
focus on two evaluation objectives in our experiments: (i) game evolution, and (ii) MIA
accuracy. For the game evolution, we simulate and generate the future explanation vari-
ances for t = 100 stages, according to the expression:

EXv
t = EXv

0 ∗ e((μ− 1
2σ2)+σWt) (2)

The above equation is the solution to the GBM (Eq. 1) of EXv
t , derived using the

itô’s calculus [9]. μ and σ > 0 are computed using the variance generated for the test
datapoints for each of the dataset. In our experiments, we take EXv

0 as the last index
value of the test data points’ generated explanation variance, as we use this initial value
to generate future explanations. Using the obtained optimal strategies and thresholds,
we compute the attack accuracy in terms of the attacker’s success rate in launching the
MIA or the accuracy of the system in preventing the MIA.

Table 2. Dataset Configurations.

Datasets Points #Features Type #Classes

Purchase 197,324 600 Binary 100

Texas 67,330 6,170 Binary 100

CIFAR-100 60,000 3,072 Image 100

CIFAR-10 60,000 3,072 Image 2

Adult 48,842 24 Mixed 2
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Datasets. We use five popular benchmark datasets on which we perform our game
analysis and attack accuracy evaluations: Purchase and Texas datasets [25], CIFAR-
10 and CIFAR-100 [33], and the Adult Census dataset [11]. To ease the comparison,
the setup and Neural Network (NN) architectures are aligned with existing work on
explanation-based threshold attacks [34]. Table 2 details each dataset’s configuration.
One can refer to the extended version of the paper for more details [21].

Evaluation Metric. We compute the True Positive Rate (TPR) to estimate MIA accu-
racy after the game ends, with each player having formulated their best response strat-
egy. TPR measures how accurately an attacker infers data point membership. We con-
sider training data points to test against the optimal strategy of the system. Since the
sample space that we have considered contains only actual training members, there can
be only two outcomes: correctly classified and incorrectly classified. The total num-
ber of training data points correctly inferred as training points (using uth) are called
True Positives (TP ), while the number of training members discerned as non-training
members are called False Negatives (FN ). Thus, TPR = TP

TP+FN .

6 Evaluation

This section analyzes our game model to assess two objectives: (i) the equilibrium evo-
lution for optimal strategies and (ii) attack accuracy (TPR) for different factors.

6.1 Impact of Different Attack Information Sources

As detailed in Sect. 5, we initially sample future explanations for each dataset using
GBM (Eq. 1). The sampled noise is added to the generated explanations variance based
on the computed belief πt, such that higher belief implies honest user, thus smaller
noise added to the explanation variance, and vice-versa.

Then, we compute different functional paths for the system and the end-user
(Sect. 3.3) i.e., we compute U(πt), L+(πt), L−(πt) and L(πt) functions. The termi-
nation payoff, λ(exv

eu
, πt) (defined in Sect. 2.4), which is used to write the boundary

conditions in the computation of L+(πt), L−(πt) and L(πt) (Lemma 3 and Lemma 4,
and Theorem 2) is assumed to be:

λ(exv
eu

, πt) =
0.8 × exv

eu
× log(πt × 2) + πt × exv

eu

b

where exv
eu

is the value of any end-user’s functional path (considered for the specific
computation) at time t, and b is the model parameter set differently for each explana-
tion method. The parameters for λ(exveu, πt) are empirically chosen based on their
suitability to each of the four explanation methods. From our numerical simulations,
we observe important patterns for each dataset in the baseline setting (Gradient*Input)
and the other three gradient-based explanation techniques.

Game Evolution in the Baseline Setting: Figure 2 and 3 represent varying game evo-
lution realized for different datasets. Below, we analyze in detail the optimal paths
obtained for each dataset.
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Fig. 2. (a), (b), (c), (d), and (e) represents the optimal functional paths for the system.

– From the plots of the optimal functional path U(πt) of the system for each of the
dataset, as shown in Figs. 2a, 2b, 2c, 2d, and 2e, we can observe that as πt → 1,
U(πt) starts decreasing. This is because, as the system’s belief about the type of
end-user approaches 1, both the variance of the explanation generated by the sys-
tem and the variance of the noisy explanation given to the end-user approach uth

and lth, respectively. After a certain point, i.e., when exv
sy

> U(πt), the system
will block the end-user, which confirms to our intuition.

– From the optimal functional paths L+(πt), L−(πt) and L(πt) of the end-user
for each of the dataset, as shown in Figs. 3a, 3b, 3c, 3d, and 3e, we can observe that
as πt → 1, L+(πt), L−(πt) and L(πt) approach the threshold lth. As discussed in
Sect. 3.3, as πt → 1 and the variance of the explanation given to the end-user
starts to approach the variance threshold, it means a malicious end-user is trying
to compromise the system. Thus, if the system doesn’t block the end-user at
the right time (or doesn’t have knowledge about optimal U(π)), then the end-user
can easily compromise the system.

– Earlier we showed that a unique MPE exists when L+(πt) and L−(πt) begin to
converge as πt → 1. This is also visible from our results as shown in Fig. 3, where
we can observe that as πt → 1, L+(πt) and L−(πt) starts to converge. However, for
the CIFAR-10 dataset, one can observe that the curves L+(πt) and L−(πt) doesn’t
converge as πt → 1. Thus, an MPE doesn’t exist in the case of CIFAR-10 dataset.
The intuition behind this observation is that the fluctuations (or variance) of the
explanation variance computed for the CIFAR-10 is high, making it difficult for them
to converge to a single point. Finally, if the system doesn’t block the end-user
before the threshold lth or uth is reached, then we say a unique MPE exists in the
game.
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Fig. 3. (a), (b), (c), (d), and (e) represent the optimal functional paths for the end-user.

Attack Accuracy in the Baseline Setting: After obtaining the optimal strategies, we
use the range of the training data points of each dataset to determine how many data
point variances lie below the computed threshold uth to determine their membership.
As shown in Fig. 4a, the attack accuracy for all the datasets except CIFAR-10 is more
than 50%. This result aligns with the observed game equilibrium analysis. Hence, the
fluctuations in explanation variance make it difficult for an adversary to reach the target
threshold, in consequence, to launch MIAs. From these obtained results, one can easily
observe that the explanations provide a new opportunity or an attack vector to an adver-
sary actively trying to compromise the system. In other words, our results are clear
indicators that an adversary can repeatedly interact with the system to compute the
explanation variance threshold and successfully launch membership inference attacks
against the system.

Results for Other Explanation Techniques: We also analyzed the game for the three
other explanation methods considered in this paper. We do not plot the game evolution
results in this setting as the plots follow a very similar trend as seen in Fig. ??, i.e., game
equilibrium was achieved for all the datasets except for the CIFAR-10. We uses the
same setting as the baseline setting (mentioned above) to compute attack accuracy for
these three explanation methods. We obtained each dataset’s attack accuracy as shown
in Fig. 4b. For the Texas and Purchase datasets, 100% accuracy was achieved, i.e., an
attacker effectively determines the membership of all the data points used for training
the model. However, for the CIFAR-10, the attack accuracy was below 50%, and for the
Adult dataset, attack accuracy was above 50% only for the LRP explanation method.
The reason is again the high fluctuations in the computed variance for the CIFAR-10
dataset (slightly less for the Adult dataset), thus making it difficult for an adversary
to determine the membership of the data points in those datasets. These results clearly
indicate that, for different explanation methods, an adversary’s capability to launchMIA
attacks will vary and may depend on the variance of the explanations.
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Fig. 4. Accuracy (TPR) for the optimal strategy obtained by the system and the end-user:
a) Gradient*Input method and b) Other explanation methods.

6.2 Analysis of Other Relevant Factors

– Impact of Input dimension. First, we analyze the impact of input dimension
on game evolution using the Sklearn make classification module [30] to generate
datasets. We set the number of classes to 2 or 100 and vary the number of features
from tf ∈ [10, 100, 1000, 6000]. We sample 20,000 points for each setting and split
them evenly into training and test sets. Second, for each value tf and for each class,
we employ two models to train from this data: model A and model B. Model A
is chosen to have fewer layers (or depth) than model B to compare the effect of
the complexity of the models on the game evolution and attack accuracy. Model A
is a fully connected NN with two hidden layers fifty nodes each, the tanh activa-
tion function between the layers, and softmax as the final activation. The network is
trained using Adagrad with a learning rate of 0.01 and a learning rate decay of 10−7

for 50 epochs. Model B is a five-layer fully connected NN with tanh activations.
The layer sizes are 2048, 1024, 512, 256 and 100. We use the Adagrad optimizer
with a learning rate of 0.01 and a learning rate decay of 10−7 to train the model for
50 epochs. Next, we demonstrate the effect of these models on our experiment’s two
main objectives.

Fig. 5. Explanation variance generated vs. explanation variance given when πt = 1.

• Effect of Model A on Game Evolution and Attack Accuracy. For k = 2
classes, we observe a similar trend in the game evolution, shown in Fig. ?? for
each of the features tf ∈ [10, 100, 1000, 6000]. However, for k = 100 classes,
we observed that the belief πt of the system about the type of the end-user
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is always set to 1 as shown in Fig. 5a. Consequently, the variance of the explana-
tions generated is equivalent to that of the explanations given (Fig. 5b). Hence,
the game didn’t evolve as the system explained the same to the end-user.
The reason is because of underfitting. Model A lacks sufficient depth (fewer lay-
ers) to classify 100 classes accurately, resulting in poor performance. Moreover,
the final model’s loss was 5.74 for all features, leading to inaccurate predictions
and affecting the experimental objectives.

Fig. 6.MIA accuracy for different features nf for model B.

• Effect of Model B on Game Evolution and Attack Accuracy. Next, we ana-
lyze the game results model B, which incurred a training loss of 0.8 across all
features. No game evolution was observed for k = 2 classes and nf = 10
because we got σ > μ and σ > 1 for the test data points explanation vari-
ance. Consequently, the computed future variance values were zero using Eq. 1.
For tf ∈ [100, 1000, 6000], we analyzed the game equilibrium and computed
the attack accuracy using sampled training data points, depicted in Fig. 6a. For
tf = 1000, an attack accuracy greater than 50% was observed; however, for
tf = 100 and tf = 6000, an attack accuracy less than 50% was observed. For
k = 100 classes, we did not observe any equilibrium for any of the features
tf . Based on the final simulated explanation variance index (at t = 100), we
computed the threshold uth and determined the attack accuracy for each feature
(Fig. 6b).

The results for models A and B show that the model choice significantly influ-
ences the game evolution and affects an adversary’s capability to launchMIA attacks
against the system.

– Impact of Overfitting. As detailed in [43], overfitting significantly boosts member-
ship inference attack accuracy. To examine its impact, we varied training epochs for
Purchase, Texas, and Adult in {30, 50, 60} datasets. Overfitting increased attack
accuracy only for the Adult dataset, which remained unchanged for Texas and
decreased for Purchase. Hence, the game’s evolution and MIA accuracy hinge on
multiple factors (experimented above), not just on training epochs. Thus, overfitting
alone does not uniformly enhance attack capability, as shown in the aforementioned
scenarios.
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7 Related Works

Efforts to enhance ML model transparency present privacy risks, as shown in existing
works where explanations are exploited for various attacks, such as MIA [34], model
reconstruction [24], model inversion [44], and sensitive attribute inference [12] attacks.
We focus on MIA, where high explanation variance indicates either exclusion from
training data or model uncertainty, enabling potential attacks [34]. Unlike prior work
analyzing the single “what if” interaction scenario, our study models repeated inter-
actions between the system and malicious end-user, examining varied settings’
impacts on MIA using optimal strategies and thresholds.

Game-theoretic approaches, such as zero-sum games [8,13], non-zero sum games
[10], sequential Bayesian games [14,45], sequential Stackelberg games [1,5] and simul-
taneous games [7] have been used in the research literature to model interactions with
ML models, specifically to model adversarial classification. Contrary to these efforts,
where an adversary’s objective is to target the classification task of an ML model, our
research effort focuses on the descriptive task, i.e., explaining the model predictions.
Specifically, we use a continuous-time stochastic Signaling Game [2,4,26,39] to model
the repeated interactions in a dynamic ML system with explanations to accomplish
MIAs. We also make a novel use of GBM [9,17,31] to model the explanation vari-
ance in order to analyze how an adversary can utilize historical variance information
to reach the target variance threshold. To the best of our knowledge, there have been
no prior works that utilize a continuous-time game-theoretic formulation to study the
privacy leakages (in the form of MIAs) due to model explanations. Similar continuous-
time stochastic signaling game models have been used in economic theory to study
stock prices [9], dynamic limit pricing [15,16], and market trading [6]. Our work is one
of the first to use modeling concepts from economic theory to study the privacy problem
in the ML and model explainability domain.

8 Conclusion

We modeled the strategic interactions between an end-user and a system, where
the variance of the explanations generated by the system evolve according to a
stochastic differential equation, as a two-player continuous-time signaling game. Our
main aim was to study how an adversary computes the optimal variance threshold to
launch explanation-based MIAs. Further, our experiments showed that an adversary’s
ability to launch MIA depends on various factors. A knowledgeable adversary can
exploit these factors, particularly the variance in explanations, to effectively conduct
MIA.
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Abstract. In this work, we propose a two-phase game-theoretic frame-
work to model and defend against Advanced Persistent Threat (APT)
attacks in Autonomous Ground Robots (AGRs) running a ROS2-
based autonomy stack for safety-critical navigation. In our scenario, the
attacker seeks to penetrate the autonomous navigation system and take
control over the AGR, causing it to crash into obstacles or fail in its
navigation mission, potentially causing catastrophic damage. We use an
attack tree abstraction to break the APT attack into two phases and
analyze it using appropriate game-theoretical models and solutions to
determine the optimal defense strategy for the defenders. For the first
phase, we propose a variation of the popular cut-the-rope (CTR) secu-
rity model by extending it to a probabilistic setting in which applying a
spot-check at a given attack tree node does not necessarily result in
a “cut” of the “rope”. We model this attack tree based on a curated
library of real-world exploits in robotic systems and potential security
measures that can counter these exploits. We show that this formula-
tion admits a unique mixed Nash Equilibrium (NE) and determines the
optimal defense policy for the first phase. Next, we address the scenario
in which the defense mechanisms against the APT attack have failed
to prevent the attacker from reaching the safety-critical target node in
the network and the robotic asset is commandeered. We equip the robot
system with a data-driven end-point Anomaly Detection System (ADS)
that monitors the robot odometry data and detects anomalous entities
being injected into the autonomy stack. We model this phase of the
attack using a two-player zero-sum game where the defender needs to
select optimal thresholds for the ADS monitor to balance the need for
detecting data-poisoning attacks quickly while minimizing the possibility
of false alarms and the attacker needs to select the intensity of the attack
for the opposing objectives. We use experiments on a Nova Carter AGR
running a Nav2-based autonomy stack within a Secure-ROS2 (SROS2)
framework to inform the second-phase game-theoretic model and demon-
strate the attack and defense mechanisms.
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1 Introduction

In recent years, the sophistication of cyber-attacks has outpaced traditional secu-
rity measures designed to protect robotic systems. The notion of achieving abso-
lute security has become an unattainable ideal, as resource limitations always
constrain system designers. A more effective approach involves understanding
the specific attack tactics and strategies that would-be attackers might employ
to compromise a robot’s defenses. This requires considering not only the techni-
cal aspects of a robot’s design but also its operational domain and the potential
consequences of a successful attack. For instance, compromising the security of
robots operating in safety-critical environments such as robot-assisted surgeries
can result in grave casualties.

Game theory offers a powerful framework for designing robust security solu-
tions by modeling and analyzing the strategic interactions between attackers,
defenders, and humans. Its key benefits include: (1) capturing the competitive
behaviors and constraints of all parties involved; (2) providing algorithms and
tools to predict the outcomes of different strategies through equilibrium analysis;
(3) incorporating human factors such as bounded rationality, cognitive biases,
and risk-sensitivity into the solution concepts; and (4) allowing for a hierarchi-
cal modeling of the system at multiple layers of the system and with varying
attack scenarios. This enables a comprehensive view of security threats across
the system’s layers and facilitates the design of integrated, system-wide secu-
rity solutions. Game theory has been successfully applied to a broad range of
cybersecurity applications, offering a valuable toolset for security professionals.

In this work, we construct a multi-phase game-theoretic framework that
breaks down a security threat to an autonomous navigation robot into two dis-
tinct phases. Each of these phases is modeled using a particular game model.
Each of these games is then played from the perspective of the defender (D) and
we characterize different kinds of solutions these admit. In modeling the compos-
ite multi-phase game, we adapt a hybrid model-based and data-driven approach
to security for robotic systems. We extend the cut-the-rope game model pro-
posed in [12] by incorporating uncertainty in the ability of a spot-check on a
given node on the attack tree to neutralize the APT and force the attacker to
re-start the attack vector on a preceding node. The model proposed in [11,12]
is chosen to be agnostic to the exact nature of the exploit that the attacker
employs on any node in the attack tree. We modify and extend this paradigm by
explicitly creating a library of known exploits and defense mechanisms for every
node in the attack tree.

Paper Organization: We begin by briefly reviewing the related work in the
area of security for networked cyber-physical systems, with a special emphasis
on prior work on robotic applications that utilize game-theoretic tools in Sect. 2.
We then formalize our problem setting and our proposed methodology in Sect. 4.
In Sect. 3, we present the application setting of our case study and discuss the
ways in which it motivates and informs our problem formulation and solution
methods. Next, we demonstrate the results of our proposed solutions for our
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use case in Sect. 5. Finally, we conclude this work in Sect. 6 with a discussion
on the results of the current work and explore future directions for potential
exploration.

2 Related Work

APTs represent complex and sophisticated attacks where adversaries employ
multi-stage strategies to infiltrate and compromise systems. In the context of
APT defense, game theory has emerged as a robust framework for modeling the
interactions between defenders and attackers, where both sides have incomplete
information and make strategic decisions. This enables analysis and optimiza-
tion of the defender’s strategy to mitigate the risk of successful APT attacks. A
notable approach is the use of differential games, which offer a theoretical foun-
dation for addressing complex multi-agent decision-making problems in robotics.
[4] highlights the relevance of differential games in developing effective defense
strategies against APTs. Their work suggests that understanding the dynamics
between the defender, APT attacker, and potential insiders is crucial for creat-
ing a comprehensive defense strategy that can adapt over time, especially given
partial information. [15] proposed a framework that integrates machine learn-
ing techniques with game-theoretic analysis to enhance the detection of APTs.
Meanwhile, [13] developed a game-theoretic framework incorporating several key
factors, including the attacker’s goals and resources, the defender’s detection
capabilities, and the dynamics of the attack and response.

The concept of multi-phase frameworks is critical in understanding APTs, as
these threats can be divided into distinct temporal phases, each requiring tailored
strategies. [16] provided a framework modeling the effective repair strategies
against APTs within a differential game context. Their insights reveal that the
interplay among the phases is vital for optimizing defense strategies, as actions
taken in one phase can significantly impact the outcomes in subsequent phases.
This emphasizes the need for robotic systems to have a holistic view of the
threat landscape and the ability to adapt their strategies dynamically. In [18]
a foundational work on multi-phase and multi-stage game-theoretic modeling
of APTs was presented. They demonstrate how game-theoretic frameworks can
capture the complex dynamics of APTs, including the attacker’s adaptive strate-
gies and the defender’s proactive countermeasures across multiple phases and
stages. Building on this work, several studies have developed more specific game-
theoretic models tailored to different aspects of APTs. [17] proposed a game-
theoretic model that considers the attacker’s deceptive actions and the defender’s
responses across multiple stages. Similarly, [5] develop a game-theoretic frame-
work for analyzing the multi-stage, multi-phase movement of APTs in critical
infrastructure networks. The anomaly detection problem also naturally admits
a game-theoretic treatment due to the competing objectives of the attacker and
defender involved. There has been considerable work in recent years to formulate
the interactions between a surreptitious attacker injecting malicious data into a
network and a machine-learning based tool trained to recognize patterns of data
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during the nominal operation of the system and flag any out-of-distribution pat-
terns that emerge in the system. In [3], the authors address the challenge of
dynamically scheduling the optimal threshold parameter for the anomaly detec-
tion application to be sufficiently sensitive so that it quickly detects anomalous
data but at the same time, also balances the need to minimize the false positive
detection rate. The Stackelberg game is played from the defender’s perspective
against an adversary with the inner knowledge of the system capable of employ-
ing a best-response strategy.

The authors in [2] identify vulnerabilities discovered in current versions of
Robot Operating System (ROS2) and Secure ROS2 (SROS2) implementations.
The authors mention that the current ROS2 communication protocol design
does not account for publisher information, making it difficult to pinpoint the
malicious actor after system failures. Additionally, a severe privacy threat orig-
inating from owner-specified permission files in the ROS2 system is identified.
This vulnerability can cause consequences such as workload termination, robot
crashes, and damage to the surroundings, as well as the potential theft of users’
private information. [19] presents an introduction to robot system cybersecu-
rity, including the vulnerabilities and potential fixes of ROS. They discuss the
application of game theory to model-based security in the context of robotics.
[12] presents a novel game-theoretic framework for defending against APTs in
robotics. They apply the Cut-The-Rope model to an experimental study of an
APT defense game on attack graphs, using a robotic arm with ROS2 as a case
study. The framework allows a security officer to establish an optimized defense
policy against stealthy intrusions. The framework demonstrates significant value
in enhancing the resilience of robotic systems against APTs. In [1] a game-
theoretic approach to the security of vehicle platooning is presented, which relies
on ROS. They conduct simulations and experiments on a vehicle platoon setup
to analyze the vulnerability of components to attacks.

A common theme across these studies is the use of game theory to model the
strategic interactions between attackers and defenders in the context of ROS and
robotics. The studies often employ dynamic game models to capture the evolving
nature of potential attacks and defenses. The methodologies include the design
of game-theoretic frameworks, the formulation of attacker and defender utility
functions, and the analysis of equilibrium strategies. Some studies also leverage
experimental methods, such as attack graphs and simulations, to evaluate the
effectiveness of the game-theoretic approaches.

3 Case Study: Autonomous Indoor Navigation Using
Nova Carter

Nova Carter1 is an open-source autonomous robotics development platform
aimed towards facilitating the shift from manual forklifts and guided vehicles
to complete autonomy. The platform is equipped with a rich sensor suite and

1 https://robotics.segway.com/nova-carter/.

https://robotics.segway.com/nova-carter/
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is tightly integrated with NVIDIA Isaac/Omniverse autonomy environment2 for
accelerated and high-fidelity simulation-based development of autonomy. Nova
Carter is expected to safely operate alongside humans in highly dynamic and
unstructured settings boosting productivity and expedites mass deployment, all
while maintaining operational safety in applications such as warehouse manage-
ment, and logistics.

Fig. 1. (left) Isaac Sim warehouse environment for Nova Carter AGR running a navi-
gation stack. (right) Static Map of the warehouse simulation environment with marked
goal points.

This makes the Nova Carter platform an appropriate case study for examin-
ing its resilience to security attacks and other cyber-related issues. In this work,
we consider the scenario of the Nova Carter autonomously navigating an indoor
warehouse environment consisting of obstacles of varying size and shape which
is shown in Fig. 1. The Nova Carter is commanded to a set of locations multiple
times in a different order within the warehouse environment to patrol the space.
An example of a security threat in this case study would be, an attack in the
computational graph of Nova Carter autonomy stack, and causing it to crash into
valuable/dangerous objects in the warehouse while patrolling or causing a glitch
in the navigation pipeline to reach one of the locations. We evaluate our work
using NVIDIA Isaac Sim, a high-fidelity robotic simulator. The Nova Carter is
equipped with a LiDAR, and a fully-operational Nav2-based autonomy stack
[7]. Nav2 has been demonstrated to be a highly reliable autonomous navigation
robotics package that has seen wide adoption in both academia and industry.
We specifically configure the robot to use the NavFn Global Planner and the
sampling-based DWB local controller [6,8] to perform the autonomous naviga-
tion task. The AGR is assigned the task of autonomously navigating between a
set of waypoints that represent specific locations in the warehouse environment
shown in Fig. 1. The global planner receives the goal poses that the AGR is
expected to navigate and chart a course based on the cost map generated by the
sensors to minimize a heuristic cost metric. This global plan then serves as the
2 https://developer.nvidia.com/isaac/perceptor.

https://developer.nvidia.com/isaac/perceptor
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basis for the local controller which further refines the cost map and drives the
robots by generating suitable command velocities for the robot to achieve the
goal.

4 Problem Formulation

In this section, we describe the two-phase game-theoretic setting for our security
problem. In phase I, the security threat actor penetrates the network using APT
attacks [18]. Once the APT actor is successful in penetrating the network and
reaching the safety-critical node, phase I of the model terminates. The attacker
now has the ability to inject malicious data into the autonomy stack. Typically,
this is considered a catastrophic failure in terms of maintaining network secu-
rity because the attacker can easily take over remote control of the AGR and
cause it to intentionally crash into an obstacle or make it fail its primary mis-
sion of autonomous navigation. However, modern robotic systems are designed
with end-point security measures such as data-driven Anomaly Detection Sys-
tems (ADS) that constantly monitor the flows of data within the robotic system
and raise an alarm when any anomalous flow of data is detected. The robots
are then guided into pre-determined safe fallback measures such as terminating
autonomous navigation or reaching a certifiably safe state until security opera-
tors can review the situation. We consider the scenario in which the APT attacker
has some information about the ADS and can strategically inject malicious data
to cause damage to the system while remaining undetected by the ADS.

4.1 Two Phases of the Security Attack

We assume that the adversary propagating the APT remains stealthy during
the penetration phase of the attack. The defender cannot detect the presence
or absence of a current or a past attack on any node of the attack tree in this
phase. However, the defender does possess a set of defensive mechanisms that
have the potential to eliminate the infection from a node. These mechanisms are
curated for each node in the attack tree just as the attacker uses a curated set of
exploits to attack a given node. This leaves proactive defensive mechanisms as
the only viable options for network security. These measures are enacted through
a series of “spot-checks” at various locations on the attack tree that seek to “cut”
the path of the attack vector, forcing the APT attacker to re-initiate the attack
vector at one of the nodes that precede the spot-check node if the spot-check
being applied is able to successfully neutralize the exploit.

We use the Robot Vulnerability Scoring System (RVSS) [14] for the eval-
uation of the RVSS score for the vulnerabilities for each of the nodes in the
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Fig. 2. In the network penetration phase, the adversary traverses the attack tree from
the source node towards the sink node v0, being able to compromise each node in
two ways with distinct RVSS-quantified difficulty layers (see Table 1); exploiting the
more sophisticated vulnerability has a higher risk of failure, but higher chances of
persisting against the reciprocally layered defender’s spot-checks. Should the defender’s
spot-check succeed on a node in the exploited section of an attack vector, the attacker
continues from the node preceding the spot-check. The players time their actions based
on Poissonian schedules with parameters λA, λD. Finally, the breaching of the target
node v0 triggers the anomaly detection phase.

attack tree Fig. 3. It provides a scoring system designed to evaluate the secu-
rity vulnerabilities of robots, as conventional scoring systems like the Common
Vulnerability Scoring System (CVSS) are not accurate enough for this purpose.

In the second phase (damage infliction), the attacker actively attempts to sab-
otage the system by interacting with physical components in the system posing
an active safety-critical threat to the system. We relax the stealthy assumption
on the attacker and assume that while in this phase, the attacker becomes sus-
ceptible to detection. We model the scenario in which the sole objective of the
attacker is to “go for the kill” instead of surreptitiously embedding itself into
the host system for other ancillary reasons. The presence of the ADS makes this
scenario challenging for the attacker because absolute exploitation could run
the risk of near instantaneous detection following which the system can enforce
safe fallback policies. On the other hand, every false alarm raised by the ADS
application results in an imposed maintenance cost for the operator. Therefore,
the ADS application is incentivized against being hyper-vigilant. We model this
mutual balancing act between the attacker and the defender in the second phase
using a zero-sum game.

4.2 Phase I: Network Penetration

The game in phase I is modeled as a sequential game (N , {Ai}i∈N , {Ui}i∈N )
with a set of players N = {A,D} with A denoting the attacker, D denoting



294 A. Zoulkarni et al.

the defender. Let also G = (V,E) be an attack tree, with the set of nodes
V = {0, .., 10, v0}, set of edges E = {(0, 1), ..., (5, v0), ..., (10, v0)}, which has
an entry point, node 0 for the attacker and a target node v0 and enables the
sequential movements of the attacker, as shown in Fig. 3. The action sets for the
two players are described by the sets AA =

⋃
u∈V {ATTu

1 , ATTu
2 } and AD =⋃

u∈V {DEFu
1 ,DEFu

2 } for the attacker and defender, respectively; to put this
in context, the attacker can move along paths from the source to the sink node
of the attack tree by implementing one of the two possible attacks or exploits,
while the defender can choose a node from the attack tree to apply one of the
two possible spot-checks at each stage. Additionally, the payoffs for the two
players UA and UD for the attacker and defender respectively, are constructed in
such a way to reflect the zero-sum nature of the game and are used to compute
the mixed strategy Nash equilibrium where the defender aims to minimize the
each player’s strategy minimizes the expected payoff given the strategy of the
opponent.

At equilibrium, neither player can improve their expected payoff by adapting
their strategy, so for a mixed strategy profile (x∗,y∗):

∀x ∈ S : UA(x∗,y∗) ≥ UA(x,y∗)

∀y ∈ S : UD(x∗,y∗) ≤ UD(x∗,y)

further, the defender’s objective is to minimize the payoff and the probability
the attacker hits the commandeers the cyber-physical system. Equivalently, this
means that the optimal strategy for the attacker would be:

x∗ ∈ arg max
xn∈AA

min
y∈AD

UA(x,y)

Each node in the attack tree can be compromised using one of two types of
exploits, as detailed in Fig. 3. One exploit is easier and more likely to succeed,
while the other is more difficult and hence riskier for the attacker. The defender
can spot-check each node in two distinct ways: a simpler defense that is likely
to succeed if the attacker chooses the easier exploit, and a more robust defense
that is more likely to dislodge the attacker if the easier exploit is used, or poten-
tially less effective if the attacker chooses the harder exploit; the likelihood of
success for each attack is related to the RVSS value for the respective attack;
the likelihood of the spot-check’s success is based on the intensity of the defense
action, which in turn is informed by the expected attacker’s action.

The attacker’s payoff reflects the probability of successfully reaching the tar-
get node v0, considering the defender’s actions at each stage, while the defender
aims at minimizing the attacker’s probability of success by appropriately select-
ing nodes to spot-check. Further, in our probabilistic cut-the-rope [12] frame-
work, there are multiple attack types to achieve the node compromise. Below,
we analyze the value function and overall utility function for the attacker and
the defender.
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Sn
A =

∑

πn∈AS1

2∑

i=1

yn(πn, ATTi) · Pr(Success at stage n | πn, cn)

with the following quantity representing the probability of success for
the attacker considering spot-check type cj

n by the defender and attack
sequence ATTi over attack segment πn by the attacker. The probability
Pr(Success at stage n | πn, cn) depends on the probability that the spot-checks
failed over the adversary’s traversed attack vector segment and is calculated
empirically.

Which represents the weighted probability that the attacker succeeds (i.e.,
reaches the target node at stage n), considering all possible attack paths (in the
attack tree) and types (in the decision tree), given that the defender

Sn
D =

∑

cn∈AS2

2∑

j=1

xn(cj
n) · Sn

A

which represents the sum over the defender’s choices of type of spot-check at each
stage n. Finally, the total utility for the attacker over all stages is the defender’s
expected utilities across all stages and with the 0-stage value obtained from the
game in the subsequent phase:

UA = Sn
D(0) +

N∑

n=1

Sn
D

Movement Patterns. Similarly with [12], in our probabilistic cut-the-rope
framework, both the defender and the attacker operate periodically at time
intervals governed by the Poisson distribution with probability mass function
(for the random variable X) with parameters λA and λD for the two players:

P (X = k) =
λke−λ

k!
Additionally, both the attacker may probabilistically succeed in their actions

will have success rate characterized by the ability to succeed in n rounds and
fail at round n − 1, when the selected m-length path for the attacker is π(m) =
[ei, i ∈ {0, ..,m}], with q(ei) denoting the probability of success at node i:

fN (n) = (1 − q(en+1)) ·
n∏

k=1

q(ek)

For the defender, the number of steps the attacker can take before the
defender becomes active follows a geometric distribution; this is because the
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defender’s action introduces a pause period affecting the attacker’s frequency of
movement, with p denoting the probability that the defender becomes active:

fN (n) = p · (1 − p)n

Attack Tree Construction. To construct the attack tree displayed in Fig. 3,
we ran experiments on a Nav2-based deployment of the autonomy stack.

Fig. 3. Attack tree for the Nova Carter cyber-physical system featuring three color-
coded phases, with the scope of this work including the network penetration and
anomaly detection phase games.

To construct the attack tree that is relevant to our deployment of the Nav2 [9]
(ROS2-based implementation) autonomy stack, displayed in Fig. 3, we analyze
the potential attack paths targeting various software components of the robotic
system (Isaac Sim Nova Carter).

Firstly, the attacker can gain initial access by connecting to the local area
network which is composed of the robotic platform or the simulation engine
as one machine, and the machine that controls the robot by setting navigation
waypoints as another (controller workstation). The attacker may breach this
local network (0.) by e.g., exploiting unsecured Wi-Fi connections or otherwise
obtaining network authentication credentials. Once connected to the network,
the attacker could breach the security monitor (1.) thereby disrupting the normal
security operations e.g., by launching denial-of-service attacks to do so.

Next, the attacker can target the keystore (2.), where ROS2 securely stores
cryptographic keys and certificates, also known as security artifacts, which along
with authentication, encryption and access control policies define the security
context that binds a group of ROS2 nodes referred to as security enclaves. We
define our enclaves based on the grouping shown in Table 2.
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Table 1. RVSS values and defenses for various attack scenarios per node in the attack
tree shown in Fig. 3.

Node Attack RVSS Defense

0 Physically access the network by
connecting an unauthorized
device to the local network

6.0 Implement physical security
measures (e.g., access control to
network hardware) to prevent
unauthorized physical connections

Exploit vulnerabilities in the
network access control to remotely
gain access to the local network

7.5 Employ strong network access
controls, such as WPA3
encryption, zero-trust and regular
device audit

1,3,4 Use compromised credentials
obtained through social
engineering to gain access to the
target machine

7.8 Use endpoint detection and
response (EDR) tools and strict
administrative access controls

Exploit a remote code execution
vulnerability to gain control over
the target machine

8.0 Regularly update and patch OS
software

2 Extract the keystore by exploiting
open file permissions

7.8 Inspect and apply strict file
permissions

Modify the CA’s certificate store
to issue fraudulent certificates and
compromise the trust chain

9.0 Secure the keystore with hardware
security modules (HSMs) and
enforce access controls e.g.,
multi-factor authentication (MFA)

5,6,10 Exploit intra-enclave open topic
permissions to inject malicious
data

6.0 Implement strict topic permissions
and use secure communication
channels (e.g., TLS)

Gain administrative access to the
robot workstation and directly use
Rviz2 to publish waypoints

7.5 Restrict administrative access and
use MFA. Monitor and log all
topic communications

7,9 Exploit a software vulnerability in
the autonomy stack components

7.8 Use static and dynamic code
analysis tools to identify
vulnerabilities

Gain administrative access to the
robot workstation and modify the
autonomy stack’s configuration or
code

8.5 Rebuild autonomy stack.
Implement integrity checks and
monitoring

8, v0 Use a compromised ROS2 node to
send malicious commands to the
robot

8.5 Use secure communication
channels and monitor command
messages for anomalies

Gain administrative access to the
robot’s control system and issue
commands directly

9.5 Restrict administrative.
Implement anomaly detection for
control system commands
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Following the keystore breach, the attacker could compromise the controller
workstation (3.) which manages commands and navigation waypoints for the
robot. This would enable waypoint-relevant topic corruption (5.) with attacks
targeting the robot’s perception and visualization data. Having breached the
controller workstation the attacker may also change QoS (the quality of service)
parameters (6.) that the ROS2/DDS middleware specifies by modifying relevant
parameters to disrupt communication reliability and performance, as well as
attack the autonomy stack (7.) by attempting to modify navigation algorithms
interfere with sensor data processing or manipulating path planning modules.

Concurrently, the attacker could target the robot workstation (4.), which
involves similar methods to the controller workstation compromise but focuses
on the machine directly interfacing with the robotic platform. This breach could
allow the attacker to interfere with robot directions directly by spoofing the com-
mand velocity topics to send false movement commands or infecting legitimate
ROS2 nodes (9.), or modifying the calibration of parameters to affect the robot’s
operational accuracy.

Each of these compromises leads to the final goal of commandeering the robot
potentially causing the robot to perform unauthorized tasks or fail to perform
the intended task.

RVSS Value Analysis. In the attack tree at Fig. 3, the attacker follows
a sequential compromise to the system, starting from gaining unauthorized
access to ultimately commandeering the robot. At each node, the attacker can
choose between two types of exploits, each with its own RVSS value. The RVSS
score categorizes vulnerabilities into five severity ranges: low (0.1−3.9), medium
(4.0 − 5.9), high (6.0 − 7.4), critical (7.5 − 8.9) and severe (9.0 − 10.0). The
thresholds shown in Table 1 were selected based on the lists of previously eval-
uated vulnerabilities in [10,14]. For example, a score of 6.0 indicates represents
high severity level and is assigned to the exploitation of itra-enclave open topic
permissions to inject malicious data into the ROS2 system, such as command
velocities in the typical cmd_vel topic, as an exploit for compromising node 5 in
attack tree. On the other hand, a score of 7.5 of critical severity is assigned to an
exploit that gives administrative access to the robot workstation and uses tools
like Rviz2 to directly publish waypoints.

In the former case, implementing strict topic permissions using rule-based
access lists and cryptography helps secure intra-enclave communications by con-
trolling which nodes can publish or subscribe to specific topics. In ROS2, enclaves
are logical groupings of nodes that operate within isolated and controlled com-
munication environments, with each enclave being linked with a particular secu-
rity policy involving access control lists (ACLs) and encryption; an example of
Nav2-specific node grouping into enclaves is provided in Table 2.

4.3 Phase II: Anomaly Detection Game

The second phase of the composite game occurs when the threat actor succeeds
in propagating the APT vectors through the attack tree and reaches the target
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Table 2. Nav2-specific ROS-node partition into security enclaves

Enclave Nodes

/navigation amcl
behavior_server
bt_navigator
bt_navigator_navigate_through_poses_rclcpp_node
bt_navigator_navigate_to_pose_rclcpp_node
controller_server
global_costmap
lifecycle_manager_localization
lifecycle_manager_navigation
local_costmap
map_server
nav2_container
planner_server
smoother_server
waypoint_follower
velocity_smoother

/sensors intel_realsense_r200_depth_driver
pointcloud_to_laserscan

/monitor rviz
rviz_navigation_dialog_action_client

/teleop teleop_twist_keyboard

node v0. We now assume that the threat actor has total control over the target
node and can maliciously manipulate the target node v0 with the objective of
maximizing the damage to the physical robot while remaining undetected.

In our implementation of the autonomy stack, we equip the robot system
with a data-driven Anomaly Detection System (ADS) application that acts as
the last line of defense to protect the robot from physical damage resulting
from a malicious takeover of the robot system. The ADS application constantly
monitors the flow of data within the system and triggers an emergency shutdown
procedure in case an anomalous data flow is detected.

The Nova Carter robot is a differential drive robot with the following kine-
matic model: ⎡

⎣
ẋ
ẏ
ϕ̇

⎤

⎦ =

⎡

⎣
cosϕ 0
sinϕ 0
0 1

⎤

⎦
[

V
ω

]

(1)

where V ∈ R+ and ω ∈ R are control variables that represent the linear velocity
and angular velocity imparted into the robot. It is in this context that the choice
of the attack tree we use to model the penetration phase becomes obvious. The
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target node in the attack tree, v0 results in the attacker obtaining direct access
to read and write into the ROS2 topic cmd_vel that the stack uses to publish
the command velocities (V, ω).

In the second phase, the attacker strategically doses the genuine cmd_vel
with a malicious stream of velocity commands that seek to sabotage the nav-
igation task of the robot. The attacker does not stop the local controller from
publishing genuine data and cannot stop the robot from subscribing to it either
without enacting a stack configuration change during run-time. ROS2 uses the
Data Distribution Service (DDS) as the middleware that handles all inter-node
communication. DDS uses a common data bus where all topics are published to
and subscribed from. DDS maintains a common memory buffer to store transient
messages for each topic. So the rate at which the attacker publishes the mali-
cious data is also important. Our stack is configured with the robot expecting
control commands at a frequency of 20 Hz. If the attacker chooses to publish
their malicious command velocities at the same rate, in effect the robot will only
receive roughly half of these commands. Increasing the malicious topic publish
rate too dramatically could result in a buffer overflow and subsequent detection
of the attack. We limit the scope of this case study to a pre-determined data
injection rate of 20 Hz to match the native rate. The APT attacker implements
this poisoning attack using a ROS2 teleop node that has gained access privi-
leges to publish to the cmd_vel topic. The enclave partition for this node can
be seen in Table 2. The attack implementation is described in Fig. 2 and can be
visualized using the robot odometry data collected during the attack shown in
Fig. 4.

The malicious velocity commands are generated directly by the attacker.
We assume that the attacker poisons the velocity commands using a constant
amplitude for both V and ω We characterize the action profiles of the attacker
by parametrizing the attack using an “aggressiveness” parameter α. We consider
two action profiles for the attacker: conservative- with α1 : (V, ω) �→ (1.2, 25)
and conservative- with α2 : (V, ω) �→ (1.5, 35). The units are m/s and rad/s
respectively. The greater the value of α, the higher the disruption induced to
the AGR’s navigation ability. However, the situation becomes more challenging
in our case because the autonomy stack is built using a high degree of resilience
and quickly adapts to account for the disturbances and overcome minor erratic
behavior induced by the malicious commands.

The ADS consists of a neural network that is trained on the AGR pose
data that is logged during the nominal operation of the AGR. We train the
neural network using five nominal runs of the AGR navigating to 10 different
pre-determined waypoints within the warehouse. We use a 3-layer binary neural
network 2-class classifier model to build the ADS using cross-entropy training
loss, trained using the ADAM optimizer. The ADS then creates a sliding window
of the pose data as it is streamed and scores each passing window of pose data
in terms of its closeness to the nominal data flow. We set a threshold value μ
on the class identifier probability output of the trained model. Lowering this
threshold causes the ADS to be hyper-sensitive to minor jitters in the pose data
and results in a very high false alarm rate. However, increasing the threshold
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Fig. 4. AGR Data Visualization under various anomalous data injection attack sce-
narios in Phase-II. (a)–(c) show the trajectory traced by the AGR under thee opera-
tional conditions. The first case is under nominal operational conditions while figure
(b) shows the case where the attacker takes a conservative approach by choosing a
moderate intensity for the attack (α = α1) and continues to disrupt the navigation
task for a longer duration. The third case (c) is when an aggressive attacker injects
command data with very high intensity (α = α2) seeking to maximize damage while
risking faster detection.

lowers the false alarm rate PF causing the detection time τd to be too long. This
results in the attacker remaining in the network for even longer and causing
further disruptions. Just as in the case of the attacker, the defender which in
this case is the ADS application, also has two action profiles that correspond to
conservative (μ1 = 0.9) and aggressive (μ2 = 0.75) detection thresholds.

We then formulate the payoff/loss function for the defender/attacker as a
scalarized composite objective given by LAD(α, μ) shown in the attacker’s game
described in the equation below:

max
α,μ

LAD(α, μ) = LAD
Pfa

(μ) + LAD
τd

(α) (2)

where LAD
fa (μ) = Pfa is the false alarm rate observed from the ADS implemen-

tation during a phase II attack and LAD
τd

(α) = τd is the time to detection after
the data injection attack is initialized. We note here that there is a fundamental
disparity in the units and scales of the two individual loss components. We there-
fore use the fraction of the time taken to detect the threat out of the expected
remaining time during the single waypoint goal navigation sub-task during which
the attack was initiated as the detection time metric. We establish the baseline
time required for each point-to-point goal as the average time observed during
the nominal operation.
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5 Results and Discussion

Fig. 5. Evaluation of the number of rounds (vertical axis) the attacker needs on average
to breach the final target v0 under two different strategies and varying schedule param-
eters; for the above defender schedule parameters λD (horizontal axis), the probabilistic
CTR method seems to outperform the heuristic approach in defending the system.

For the phase I game, we consider the attack tree framework presented in Sect. 4
and run simulations to evaluate the players’ derived strategies against a custom
heuristic approach on (i) the attacker’s selection of the exploit path or attack vec-
tor and the attacker’s response to successful spot-checks, and (ii) the defender’s
selection of node in the attack tree to spot-check and the level of defense enforced
at that node.

For the simulation purposes, we consider an attacker whose strategy is
informed by the aggregate difficulty of the selected path, as a distribution of nor-
malized exponential sums of the individual exploit difficulty levels of all possible
exploits and nodes at which they can take place, the collection of which is used
to define the probability mass function (PMF) for the attacker’s strategy. The
choice of this way of strategy derivation for the attacker is based on the expec-
tation from the attacker to choose the relatively simpler exploit path possible,
which at equilibrium will take into account the defender’s action of incentivizing
the attacker to increase the difficulty level of vulnerabilities exploited to ensure
a more likely success. For the defender, the probability of node selection to spot-
check takes into account the respective defense intensity level after which, the
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spot-check probability of success is calculated separately for any node n ∈ V as
follows, along with a value instantiation for our simulation purposes:

Pr(on-path spot-check success) =
(
Pr(DEF1 | ATT1) Pr(DEF2 | ATT1)
Pr(DEF1 | ATT2) Pr(DEF2 | ATT2)

)
=

(
0.5 0.8
0.2 0.5

)

Finally, the attacker and the defender are allowed to issue actions on a Poisson
schedule with separate parameters λA and λD and corresponding frequencies. For
evaluation purposes, we set the attack λA = 0.1 and experiment with different
values of λD. By allowing the game to be played for up to 104 rounds, we use
the number of rounds the attacker needed to achieve its goal. The attacker
uses the strategy prescribed by our probabilistic framework while the defender’s
strategy is compared against a heuristic approach of random selection of node to
spot-check. The results are summarized in bar plots 95% confidence interval in
Fig. 5 for 100 experiments of each case, for which we report the average number
of rounds. This shows that over varying defense action frequency values, the
attacker is consistently delayed more by the probabilistic cut-the-rope prescribed
defense strategy.

Fig. 6. Plots of the dissimilarity scores for a sample of the pose data while the AGR
is under the Phase-II attack by a conservative attacker (left, α = α1) and aggressive
attacker (right, α = α2). The ADS is configured to be either conservative (red dotted
line, μ = 0.9) or aggressive (green dotted line, μ = 0.75). The individual payoff compo-
nents, τd and Pfa were computed four all four cases in (A1 ×A2). The plots also show
the ground truth of the initiation of the data injection attack (violet vertical line at
500 samples). The fraction of samples reported above the threshold before the attack
initiation is determined to be the false alarm rate. The detection time is computed as
the ratio of the detection time taken after the attack initiation to the attack duration
time still left before the attack is deemed successful. (Color figure online)

For the phase II game, we train the ADS neural network on 5 nominal simu-
lation runs of the entire task duration and emulate the attack using an anoma-
lous noise injection node. We now assign specific values to the action profiles of
the players AAD = {conservative, aggressive}. For the specific values defined in
Sect. 4, we plot the results of the data-injection attack simulation in Fig. 6. The
components of the composite pay-off function can be deciphered from the figure.
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Combining these using Eq. 2 provides us the payoff matrix for the attacker,

PAD
A =

(
0.206 0.2125
0.3346 0.3302

)

= −PAD
D . From the data-driven payoff matrix, the

game admits a pure Nash Equilibrium. We compute the value of the game to be
0.3302 and the optimal strategy for the defender to be (0, 1) and for the attacker
to be (0, 1), implying that the aggressive action profiles as defined earlier suit
both the players well.

6 Conclusions

For the evaluation of our multi-phase game theoretic approach, we utilize a cus-
tom attack tree tailored to our case study involving the Nova Carter Isaac Sim
robotic platform and its Nav2-based autonomy stack structure from a software
perspective as well as the hardware components involved. Considering each spe-
cific component’s ways of compromise during the network penetration phase,
we provide the framework for a defense strategy aiming to prevent the attacker
from taking control of the robot. In the anomaly detection phase, the goal is
to identify intrusions and deactivate the robot, as demonstrated using a data-
driven Anomaly Detection System. Our approach, which extends the cut-the-
rope model to a probabilistic and multi-phase setting, successfully models the
attack and defense dynamics, offering a comprehensive strategy to address both
phases of the attack. Thus, our work offers a novel perspective on integrating
model-based and data-driven approaches to game-theoretic decision-making for
security applied to a practical system.

In the future, we would like to further investigate the performance impact on
the system when implementing the spot-check measures in phase I and incorpo-
rating the incurred cost into the decision-making process. For phase II, we would
like to extend the current work to include more advanced means of anomaly
detection that rely on multi-modal real-time data monitoring to detect a wider
variety of malicious data injection threats.
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Abstract. As autonomous Cyber-Physical Systems (CPS) increasingly
operate in critical environments, ensuring their security and reliability
becomes paramount. This paper presents a robust anomaly detection
framework designed to enhance the resilience of CPS by integrating mul-
tiple sensor modalities, including Lidar, Odometry, and Network Traffic.
Our approach leverages the strengths of each modality, compensating
for potential weaknesses when individual modalities are considered in
isolation. A vector-based reconstruction loss function is introduced, sig-
nificantly improving the detection of subtle anomalies by preserving the
contributions of individual features.

Our experimental evaluation, conducted on a custom-built Unmanned
Ground Vehicle (UGV) platform, shows that the proposed system
achieves an anomaly detection accuracy of up to 98% when using the
improved vector-based reconstruction loss, compared to 72% with a stan-
dard scalar-based loss. Even when the training data is reduced by 50%,
bringing the total training set size down to 92 samples, the system main-
tains a high accuracy of 97%, demonstrating its robustness under con-
strained data conditions. These results indicate the effectiveness of our
multimodal approach in real-world applications where data availability
may be limited. Our work focuses on generalizability and modularity,
ensuring adaptability across various CPS platforms and evolving threats,
ultimately enhancing the reliability of autonomous systems in real-world
scenarios.
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1 Introduction

As autonomous systems proliferate across industries such as cybersecurity and
industrial control systems, the security and reliability of Cyber-Physical Systems
(CPS) have become critical. Compromised CPS can cause substantial physi-
cal damage and even loss of life, particularly in high-stakes applications like
autonomous robots and vehicles [14,15]. Consequently, safeguarding CPS is of
paramount importance to prevent catastrophic consequences.

Ensuring the reliability and safety of CPS is a significant challenge, especially
in light of potential anomalies that can disrupt operations [3]. Robust anomaly
detection mechanisms are crucial for maintaining the resilience of CPS, protect-
ing against unexpected events that could compromise system performance and
safety.

Autoencoders are particularly effective in this context due to their ability
to learn intricate patterns in CPS data, making them a strong candidate for
identifying anomalies that deviate from expected system behavior in an unsu-
pervised fashion. While previous research has demonstrated the effectiveness
of autoencoders in detecting anomalies within CPS, their performance can be
inconsistent across different applications, particularly under adversarial condi-
tions. There remains a gap in the literature concerning the enhancement and
fine-tuning of anomaly detection techniques tailored to specific CPS platforms,
particularly for real-world applications and datasets.

1.1 Background and Related Work

Autoencoders have shown promise in detecting anomalies within CPS, achiev-
ing high accuracy, recall, and F1 scores while maintaining low false positive
rates. In Cyber-Physical Production Systems, for instance, autoencoders have
been used for dimensionality reduction and anomaly detection, outperforming
state-of-the-art techniques on real-world datasets [10]. Additionally, methods
combining LSTM-Autoencoder for anomaly detection in industrial control sys-
tems have demonstrated superior performance over other unsupervised methods,
with a low false negative rate [9].

Recent advances have explored more complex models, such as GRU-based
Gaussian Mixture VAE systems for handling multimodality in time series data,
and Unsupervised Multi-head Attention Autoencoder (UMAA) for improving
performance on real-world CPS datasets [11,13]. The Deep Autoencoding Gaus-
sian Mixture Model (DAGMM) has also been proposed, jointly optimizing a
deep autoencoder and Gaussian Mixture Model for high-dimensional data, sig-
nificantly improving F1 scores on benchmark datasets [20].

Despite the progress, existing anomaly detection methods face several chal-
lenges:
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Adaptability to Complex Data: Handling high-dimensional, multimodal
data in CPS is challenging due to the system’s complexity and heterogeneity.
Most research has focused on individual components, overlooking the fusion of
multiple sensor modalities, which is crucial for comprehensive system behavior
analysis [6,8].

Generalizability to Real-World Applications: Many methods lack gener-
alizability due to limited testing on real datasets, which reflect the dynamic
nature of CPS. Collecting real-world robotic data is logistically complex and
resource-intensive, hindering the development of robust anomaly detection sys-
tems [7]. Design and evaluation of anomaly detectors based on data collected
from robotic simulator environments does not fully capture the complexities and
dynamics inherent in real-world scenarios [12]. Simulator data are mainly focused
on sensor information neglecting the interconnectedness between network traffic
flows and sensor data, thereby impeding comprehensive system behavior anal-
ysis. While multimodal approaches are emerging, few studies have successfully
integrated network traffic data with multiple sensor modalities, which is essential
for a comprehensive understanding of CPS behavior [12,18].

1.2 Contributions

In this work, we incorporate the best practices for creating unsupervised autoen-
coder based anomaly detection systems for Cyber-Physical Systems used in pre-
vious literature and address some of the limitations of current anomaly detec-
tion systems by focusing on several key design questions. Specifically, we pro-
pose a robust anomaly detection framework that integrates multiple sensor
modalities—namely, Lidar, Odometry, and Network Traffic. This multimodal
approach enhances anomaly detection by leveraging the strengths of each modal-
ity, compensating for potential weaknesses when individual modalities are con-
sidered in isolation. We explore the impact of incorporating these additional
modalities into the autoencoder architecture, assessing the system’s ability to
maintain accuracy and robustness when handling missing or redundant modal-
ities, and evaluating whether modalities with lower detection capabilities affect
overall performance.

Furthermore, we introduce a vector-based reconstruction loss function that
significantly enhances the ability of our autoencoder to detect subtle anomalies.
Unlike traditional scalar-based methods, our vector-based approach preserves
the contribution of each individual feature, allowing for more precise anomaly
detection, particularly in identifying subtle anomalies across multiple features.
This innovation is critical for improving detection accuracy in complex, real-
world environments.

To evaluate our approach, we designed and implemented a experimental
setup using a custom-built Unmanned Ground Vehicle (UGV) platform. This
includes the collection of a real-world dataset under various operational con-
ditions, encompassing both normal and attack scenarios. Additionally, we con-
ducted experiments to assess the robustness of our anomaly detection system
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under adversarial conditions, including attacks specifically designed to evade
detection. Our results demonstrate that the proposed system maintains high
accuracy and robustness, even when the available training data is significantly
reduced—an important consideration for real-world applications where data may
be limited.

Throughout the design process, we emphasized generalizability and a mod-
ular architecture, ensuring that the anomaly detection system can be adapted
to different CPS platforms and evolving threats. The insights gained from our
research contribute to enhancing the reliability and maintenance of autonomous
robotic systems in real-world applications.

The remainder of this paper is organized as follows: We explain the detection
mechanism in Sect. 2, including the feature engineering for each modality, the
spatio-temporal encoding for each modality, and the anomaly detection stage.
Then, in Sect. 4, we discuss our experimental set-up including the software and
hardware components of the robotic platform as well as the environmental setup
for data collection. Section 5 explains the dataset creation and includes insights
into the attack implementation mechanism. The experimental results and the
conclusion of the paper respectively in Sects. 6 and 7.

2 Detection Model

The proposed detection model consists of three main stages: (1) feature engi-
neering for each modality (Sect. 2.1), (2) learning representations (Sect. 2.2),
and (3) anomaly detection (Sect. 2.3). The architecture employs spatiotemporal
encoding for each modality, aggregating the encoded features into a unified rep-

Fig. 1. Our Anomaly Detection System Process Flow
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resentation, which serves as input to an Autoencoder (AE) model for anomaly
detection (Fig. 1).

2.1 Stage 1: Feature Preparation and Transformation

In the feature preparation stage, spatial and temporal patterns within each
modality are encoded to optimize the model’s ability to coordinate across the
three chosen modalities—network, Lidar, and Odometry—each produced at dif-
ferent rates and indices. By correlating them by time, the model can accurately
predict whether the robot’s behavior is normal for a specified time interval. This
step includes feature encoding, scaling, padding, data sampling, and binning to
align the modalities. The raw collected data undergoes preprocessing, feature
extraction, and engineering to enable effective data analysis and modeling.

Lidar Data: Lidar data is a time series of 3D spatial positions of points within
the point cloud, represented by their x, y, and z coordinates, as shown in Fig. 2.
To reduce the computational complexity while preserving essential spatial infor-
mation, a subset of points is selected based on azimuthal angles (Fig. 3). This
subset effectively represents the spatial distribution of objects around the robot,
enabling accurate anomaly detection with reduced computational time.

Fig. 2. Lidar Time-series: Progression of the point cloud as observed by the Lidar
sensor across 6 sample timesteps: 1, 20, 40, 60, 80, 100.

Odometry Data: The odometry data consists of a time series detailing the reg-
istered pose and velocity of the robotic platform. The pose information includes
the position (x & y coordinates) and orientation of the robot in quaternion form,
while the velocity data includes both linear velocity (m/s) and angular velocity
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Fig. 3. Azimuthal angle-based sampling of the point cloud data. Original: 26,570
points; Sampled: 5,000 points.

(rad/s). This time series offers insights into how the control algorithms responded
and adapted throughout the robot’s trajectory during each experiment.

Network Traffic Data: The raw network traffic data is captured in PCAP for-
mat, containing details such as source and destination IP addresses, port num-
bers, timestamps, packet sizes, and protocol types. Inspired by the methodology
outlined in [17], we extract 79 features from bidirectional network traffic flows.
Our feature space follows the CICFlowMeter format, encompassing a broad spec-
trum of characteristics including flow duration, packet size, protocol type, and
various statistical measures.

2.2 Stage 2: Spatio-Temporal Encoding for Each Modality

In the second stage, the primarily sequential nature of the data necessitates
the use of a robust sequential model to encode temporal dependencies. To sys-
tematically capture temporal patterns within each modality, we construct an
LSTM-based feature extractor [2,4,5,19,21]. This model extracts and retains
vital information from the sequential data. Additionally, we introduce a Graph
Convolutional Network (GCN) to handle the encoding of spatial patterns within
modalities, such as Lidar data. The spatially encoded data is then integrated into
the LSTM-based architecture, combining both spatial and temporal encoding.

Upon extracting the essential spatio-temporal features from each modality,
these features are aggregated through array concatenation. The concatenated
array, which combines features from the three modalities, serves as the input for
the AE-based anomaly detection stage.

Let T be the set of time series data, where Ti represents the time series data
from sensor i:

T = {T1, T2, . . . , Tn}
where n is the number of sensors. For each Ti, let LSTMi be the LSTM-based
binary classifier trained on Ti. The output of LSTMi, after removing the last
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layers, is represented as the feature vector Fi = LSTMi(Ti). The concatenation
of all feature vectors into a single 1D vector is denoted as V :

V = [F1, F2, . . . , Fn]

2.3 Stage 3: Autoencoder-Based Anomaly Detection

AEs are neural networks trained to reconstruct input data, using the error
between the original and reconstructed data as the loss function during training:

Err(x) = ‖x − A(x)‖
where x and A(x) are the input and output of the autoencoder, respectively, and
‖ · ‖ is typically is a Euclidean norm.

AEs are typically trained with fewer neurons in the hidden layers than in the
input and output layers, encouraging the model to learn a compressed represen-
tation of the data, effectively performing dimensionality reduction. In anomaly
detection, it is common to train the autoencoder on only normal data. During
inference, normal data should be reconstructed with low error, while anomalies
will exhibit higher error due to following a different distribution. This recon-
struction error can be used as an anomaly score; samples with errors above a
certain threshold are deemed anomalous.

The AE is trained on the concatenated feature vector V obtained in Stage
2.2 (V = [F1, F2, . . . , Fn]) to produce a latent representation Z (Z = AE(V ))
with high information gain. The network minimizes a reconstruction-based cost
function defined as:

Standard Reconstruction Loss (Lrecon) is the Mean Square Error (MSE)
between the input vector and the decoded/reconstructed vector:

Lrecon =
1
n

n∑

i=1

(Xi − X̂i)2

where n is the number of elements in the input data, Xi is the input data vector
(i.e., the concatenated feature vectors from the feature extraction stage), and X̂i

is the predicted or reconstructed vector by the model.
The autoencoder undergoes training with the primary objective of recon-

structing the input data while identifying differences between the original input
and the reconstructed version, which could indicate anomalies. The model is
trained exclusively on normal samples, with its learning progress monitored using
a validation set comprising both normal and abnormal samples. Early stopping
is implemented with a patience parameter set at 4 epochs, halting training when
the validation loss does not decrease for 2 consecutive epochs. The validation loss
typically surpasses the training loss due to the inclusion of abnormal samples in
the validation set.

Improved Reconstruction Loss: We modify the standard reconstruction loss
to a vector-based reconstruction loss that enables the model to detect subtle
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anomalies that may only affect a subset of features. The vector based approach
also preserves the information about which specific features contribute most
to the reconstruction error, allowing for more granular and precise anomaly
detection. The improved reconstruction loss (imRL) is formulated as follows:

r =
∥∥∥X − X̂

∥∥∥ =
(
‖X1 − X̂1‖, ‖X2 − X̂2‖, . . . , ‖Xn − X̂n‖

)

th = (th(X1), th(X2), . . . , th(Xn))

thk = max
j=1,...,m

(
‖Xj

k − X̂j
k‖

)
, for k = 1, 2, . . . , n

Here, r represents the improved reconstruction loss, computed as a vector
where each element Xi corresponds to an individual feature in the extracted
feature vector for a sample. The threshold thi is determined by the maximum
difference observed for the i-th feature across all training samples.

In contrast to the standard approach, where the reconstruction loss is treated
as a single scalar value, the improved method considers it as a vector. This
approach prevents the undesirable overlap between normal and anomalous data
that can occur when all features are summarized into a single value, thereby
enhancing the model’s ability to detect anomalies.

3 Anomaly Detector Integration in CPS

In achieving a seamless integration of our anomaly detection system into a CPS
structure (Fig. 4), and establishing a framework for continuous security mon-
itoring and evaluation, we design and implement the architecture described in
Fig. 5. CPSs integrate computation, networking, and physical processes, typically
comprising the following components: (a) Physical components, e.g., wheels; (b)
Actuators, which receive control commands from control systems and adjust
the operational parameters of physical devices; (c) Sensors, responsible for mea-
suring the operational status of devices and transmitting data to the control
systems; (d) Control systems, which receive sensor data and issue control com-
mands to actuators based on predefined control logic. The physical component
of our CPS is an autonomous robotic platform described in Sect. 4 enabling real-
world experimentation and creation of a genuine real-world dataset of normal
and abnormal conditions. The Actuators are the 2 motors driving the robot.
We also designed a dashboard in which the findings of the anomaly detector is
shown and communicated with the operator/observer of the robot.

We build our anomaly detector on top of a (Robot Operating System) ROS-
based autonomy stack. ROS is a popular choice in a wide range of robotic appli-
cations such as Automated Guided Vehicles (AGVs) and Autonomous Mobile
Robots (AMRs) [16], and enables the development and operation of complex
robotic systems within CPS environments by facilitating the assembly of a
sophisticated system capable of integration with the physical world. This design
enables our AD to get real-time input from the sensor suite and to provide live
detection information to the robot control system and/or operator.
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Fig. 4. Our CPS Architecture Fig. 5. Our Anomaly Detector Integra-
tion into the CPS Architecture

4 Experimental Set-Up

Despite the growing significance of cybersecurity research in autonomous robots,
implementing, training, and testing anomaly detection models for real applica-
tions remains rare due to the cost, time, and difficulty of having access to authen-
tic real-world datasets and experimental environments. We bridge this critical
gap by leveraging a genuine real-world robotic platform as our experimental
testbed.

4.1 Robotic Platform: Hardware and Software Components

To support real-world data acquisition and allow for generalization of this work
to other autonomous vehicles and CPS, we equipped a Clearpath UGV Husky
robot with a diverse sensor suite typical of such systems. This included Lidar,
IMU, GPS, RGBD camera, high-resolution cameras, time synchronization, Wi-
Fi, Bluetooth, and a 10GB NIC. Weighing approximately 50 kg and reaching
speeds up to 1m/s, the robot is a versatile platform for data collection and exper-
imentation. Two GPU-enabled computing units running ROS Noetic on Ubuntu
20.04 enhance its computational power, enabling efficient decision-making pro-
cesses for the Autonomous Driving System.

We incorporate the U.S. Army Combat Capabilities Development Command
Army Research Laboratory (DEVCOM ARL) autonomy stack [1] into our frame-
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work. This endows us with modularity at both the algorithm/node level and the
cluster of nodes, establishing a federated world model that facilitates flexible sys-
tem design concerning data location and communication. It is essential to note
that the autonomy stack, entirely proprietary to ARL, stands as a cutting-edge
technology, providing a robust foundation for our research endeavors.

The autonomy stack consists of four main components, namely, (1) Percep-
tion Pipeline, (2) Simultaneous Localization and Mapping (SLAM), (3) Metric
Planning and Execution, and (4) Symbolic Planning and Execution. Where, the
perception pipeline makes symbolic observations (i.e. detect objects, estimates
location, and image classification) based on sensor data; SLAM estimates robot
trajectory from relative pose measurements (pose-graph optimization) using
sensor data and perception pipeline products; Metric planning and execution
achieves metric goals, such as waypoint navigation, using a metric model of the
world; The symbolic planning and execution capability uses a symbolic model
of the world to achieve symbolic goals such as going near a particular object.

The autonomy stack is equipped with a Unity-based perceptual and physics
simulation engine. The simulator enables Docker-based development and deploy-
ment. We build our anomaly detector on top of the autonomy stack. The robots
receive sensory inputs to predict control actions. To detect anomalies in the sys-
tem, a machine learning model is trained and used in parallel to the controller,
which identifies if the system input follows a similar pattern to the training set.
This set-up allows us to not only capture the sensor reading of the external
environment, but also capture the network communications between the sensors
and autonomy stack (Fig. 6).

Fig. 6. Lidar attack Architecture

4.2 Experimental Environment

The data collection experiments were conducted in indoor and outdoor settings
where obstacles were introduced to provide the desired stochasticity and a chal-
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lenging environment for the mobility of the vehicle as depicted in Fig. 7a. The
indoor setup provides us with a controlled environment where we can ensure the
repeatability of the experiments without any foreign objects or weather mod-
ifying the parameters of each iteration. The outdoor setup allows us to test
robustness and adaptability of our system in a more dynamic and unpredictable
scenarios such as including varying terrain and environmental factors such as
wind and uneven surfaces. A normal operation of the robot is defined as suc-
cessful autonomous navigation of the Husky from start position to the goal pose
without collision with obstacles in the course.

Fig. 7. Evaluation Environments

5 Dataset Creation and Attack Design

To assemble our dataset, we collect a diverse array of data during each exper-
imental session. These experiments were conducted both under normal robot
operating conditions and attack-induced conditions. In each experiment, data
collection encompassed three distinct modalities. The primary modality, Lidar
data, held paramount importance as it served as the focal point for all designed
attacks. Complementing the Lidar data were two secondary modalities: Odom-
etry data and Network traffic. These secondary modalities were deemed as such
because they were not directly targeted; however, they carried significant infor-
mation, as the infection of the Lidar propagated causal influence onto them.
The Transmission Control Protocol/Internet Protocol (TCP/IP) and other data
packets being transmitted or received over the husky network are captured using
tcpdump packet analyzer program across all active interfaces, while Lidar and
Odometry sensor data were collected by recording Robot Operating System
(ROS) topics in the form of ROSbags.
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5.1 Attack Creation

To test our anomaly detector against different levels of stealth in attacks, we
developed and executed a Man-in-the-Middle (MITM) attack on our robotic
platform. This attack focused on manipulating point cloud data to trick the robot
into detecting a non-existent obstacle. We carefully designed and implemented
the MITM attack by intercepting and modifying the point cloud data exchanged
between the sensor and the robot’s processing unit (Sect. 5.1). Next, we refined
our approach by developing a more sophisticated and stealthy version of the
MITM attack. This version was specifically designed to evade detection by the
Lidar-based detector. We achieved this by minimizing changes to the point cloud
data, making the attack more effective and avoiding suspicion (Sect. 5.1).

The ROS framework consists of nodes coordinated by a master node. Initial-
izing a node registers it with the master as a publisher and/or subscriber. When
both are registered under the same topic, the master establishes a TCP connec-
tion. Our MITM attack targets this process to make our node the only connection
between the Ouster Lidar driver (publisher) and the Perception Subsystem (sub-
scriber). Each ROS node functions as an XML/RPC server. Our attack begins
by initializing a publisher/subscriber ROS node for the point cloud topic and
waits for the valid nodes to initialize. Once the first valid node starts, the master
connects it to our attack node. Before the second valid node starts, our attack
deregisters the first, so the master only connects the second valid node to our
attack node. Finally, our attack deregisters the second node, leaving our attack
node as the sole connection. This allows us to manipulate the topic, such as
altering the Lidar point cloud.

Attack V1: Man In the Middle Attack (MITM) Implementation.
The Attack v1 (Fig. 8b) involves modifying the original point cloud data P =
{p1, p2, . . . , pN} to generate a new point cloud including a static obstacle. We
select a subset of the original point cloud data Nobs = N/C to remove and
replace with a fake obstacle P ∗ = {p∗

1, p
∗
2, . . . , p

∗
Nobs

}. Each point in the raw
point cloud P is defined as pk = (xk, yk, zk). We remove |Nobs| points from the
original point cloud and replace them by p∗

k = (x∗
k, y∗

k, z∗
k). p∗

k is generated by
Eq. 1.

x∗
k = R − ŷ2

k + εx,k

y∗
k = ŷk + εy,k

z∗
k ∼ N (μ, σ2

z∗)

(1)

where εx,k ∼ N (μ, .00252), εy,k ∼ N (μ, .0052), ŷ1, ŷ2, . . . , ŷN ∼
Uniform

(−w
2 , w

2

)
, μ = 0, σ∗

z = 0.125, C = 4, R = 0.75, and w = 1. This
configuration results in the creation of a static 1-meter wide and 0.25-meter tall
arc positioned 0.75m in front of the Lidar sensor that is recalculated once every
60 s.
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Attack V2: Hiding the Attack from the Lidar Sensor. Attack v2 (Fig. 8c)
creates a dynamic obstacle vs the static obstacle in Attack v1 that allows us to
create an obstacle similar to the one described in Attack v1 section but stay
closer to a real world scenario in implementation since p∗

k is generated based on
the input from the original data points as shown in Eq. 2.

x∗
k = R − y2

k + εk

y∗
k = yk

z∗
k = zk

(2)

where |yk| < wy, zk√
x2
k+y2

k

< wz

2R , εk ∼ N (
μ, σ2

εk

)
, εk = 0.0125, R = .75, wy = 1,

wz = .25.

Fig. 8. Comparison of environments: (a) no attack, (b) Attack 1, (c) Attack 2

Both attacks create an extruded parabola surface with some noise in front
of the Lidar. We can consider the set S as all of the points in the region of
this surface with a thickness of 60 mm. To compare the difference of these two
attacks we defined a Stealthiness Score (CS) that corresponds to the difference
between the attacked point cloud and the point cloud if the false obstacle was
real.

CS =
|Nobs − nobs| + nredundant + nmiss

Ntot

(3)

We define Nobs as the number of points in the obstacle region (|S|) when
a true obstacle exists at the described surface. nobs = |S| when the attack is
underway, nmiss is the number of points removed from the valid point cloud,
and nredundant is the number of redundant points (duplicate azimuthal and
polar pairings). A point is considered redundant if there is another point in
the cloud with the same azimuthal and polar angles, this should not happen
under standard applications as it is the equivalent of seeing through an object.
The stealthiness scores for each attack are summarized in Table 1.
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Table 1. Stealthiness comparison of attacks. A lower Stealthiness Score is indicative
of a less detectable attack

Attack Stealthiness Score

Attack v1 0.4167
Attack v2 0.085

6 Results

6.1 Evaluation Metrics

In evaluating the efficacy of the proposed anomaly detection system, treated
as a binary-class classification problem, the key performance metrics employed
to assess the model’s accuracy, robustness, and generalization capabilities are:
Accuracy to evaluate the overall performance of the detector, the Sample-
Weighted F1 Score to mitigates the impact of class imbalances, Anomaly
Recall Rate (ARR) to quantify the proportion of actual anomaly cases cor-
rectly identified, Normality Precision Rate (NPR) to quantify the propor-
tion of actual normal cases correctly identified. We consider both ARR and NPR
for evaluating the performance of our anomaly detector, to account for differ-
ences in the cost of false positives and false negatives.

Accuracy =
Number of Correct Predictions

Total Number of Reported Predictions

F1 Score = 2 × TP

TP + 1
2 (FP + FN)

Sample Weighted F1 Score =
∑

i ni · F1 Scorei∑
i ni

where ni represents the number of samples in class i.

ARR =
Number of Actual Anomaly Cases

Total Number of Reported Anomaly Cases

NPR =
Number of Actual Normal Cases

Total Number of Reported Normal Cases

6.2 Evaluation and Results

Figure 9 illustrates the Principal Component Analysis (PCA)-based visualization
showcasing the features extracted from three input modalities: Lidar, Odometry,
and Network. Each data point in the plot corresponds to a trial, and its position
signifies its location in the feature space for Lidar, Odometry, and Network data
respectively. The arrangement of samples in the feature space provides insights
into the discriminative capabilities of the extracted features for both attacks.
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Table 2 presents the evaluation of the performance of Feature Extractors
trained on data from each modality. In the Attack 1 scenario, the arrange-
ment of samples in the Lidar and Network feature spaces suggests that both
Lidar and Network features are highly discriminative, effectively distinguish-
ing between normal and abnormal classes. However, the Odometry-based fea-
tures, while demonstrating a high-level distinction between normal and abnor-
mal classes, exhibit a failure in accurately identifying abnormal instances. In the
Attack 2 scenario, the nature of the extracted features in their respective feature
spaces remains relatively consistent, with more intermingling between samples
belonging to the two categories, particularly in the Lidar feature space. This
emphasizes that Attack 2 has notably reduced the distinctiveness of features in
abnormal samples, making them more similar to normal samples. Consequently,
the identification of abnormal instances becomes more challenging compared to
Attack 1. Features associated with the Odometry and Network modalities exhibit
minimal alterations in their respective feature spaces during both Attack 1 and
Attack 2. This observation is consistent with the understanding that Attack 2
primarily manipulates Lidar data, and the functional impact of both attacks on
the autonomy stack remains consistent, albeit with enhanced stealthiness. Con-
sequently, this observation strengthens the rationale behind considering Odome-
try and Network as secondary modalities in the detection stage, as their features
remain relatively unchanged despite the attacks, emphasizing their reliability.

Table 3 compares the performance of our anomaly detection system under
the Attack 1 and Attack 2 performed on the real-world robot and a comparison
of the effect of combinations of input modalities available at the inference time
on the final detection. The data in this table suggests: (i) The combination of
Lidar, Odometry, and Network data for training the Anomaly Detector generally
leads to higher accuracy, F1 Score, ARR, and NPR compared to using individ-
ual modalities or subsets of modalities. (ii) Utilizing all three modalities (Lidar,
Odometry, Network) for training results in improved performance in detecting
anomalies in autonomous CPS environments. (iii) The presence of feature extrac-
tion and anomaly detection stages plays a crucial role in enhancing the Anomaly
Detector’s performance. (iv) Proper feature extraction from multiple modalities
followed by effective anomaly detection contributes to better anomaly detection
capabilities in autonomous systems.

The results of our experiments are summarized in Table 3, which presents the
anomaly detection accuracy of our system when trained on different combina-
tions of input modalities. Each row corresponds to a different experiment where
the anomaly detection system was trained on data from specific modalities, as
indicated by the checkmarks on the left side. The columns in the table compare
the performance of the system across three distinct conditions:

Standard Reconstruction Loss: The baseline performance using the standard
mean square error (MSE) reconstruction loss.

Improved Vector-Based Reconstruction Loss: The performance using our
proposed vector-based reconstruction loss (imRL), which offers a more nuanced
detection of anomalies by preserving feature-specific reconstruction errors.
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Reduced Training Sample Size: The performance when the training set size
was reduced by 50%, evaluated with the improved reconstruction loss.

6.3 Standard Reconstruction Loss vs. Improved Vector-Based
Reconstruction Loss

The results indicate a significant improvement in detection accuracy when using
the vector-based reconstruction loss compared to the standard MSE-based app-
roach. This is consistent across all combinations of input modalities. The vector-
based loss enhances the system’s ability to detect subtle anomalies that may only
affect a subset of features, thereby reducing the overlap between normal and
anomalous data distributions. For example, when all three modalities (Lidar,
Odometry, and Network) are used, the detection accuracy improves from 72%
with the standard reconstruction loss to 98% with the improved vector-based
loss. This improvement is more pronounced when only two modalities are used,
with the accuracy increasing by up to 36% in some cases.

6.4 Impact of Reducing Training Sample Size

When the training sample size is halved, the anomaly detection accuracy nat-
urally decreases. However, the system still maintains a relatively high level of
performance, particularly when using the vector-based reconstruction loss. For
instance, when trained with all three modalities and a reduced dataset, the
accuracy only drops by 1%, demonstrating the robustness of the improved loss
function even under constrained data conditions. This suggests that the system
can effectively generalize from smaller datasets, a critical feature for real-world
applications where data availability may be limited.

6.5 Modality-Specific Observations

Lidar Only: Training on Lidar data alone yields the lowest accuracy among all
configurations. This outcome is by design, as the attack was specifically crafted to
be invisible to the Lidar modality. The purpose of this was to evaluate how effec-
tively the other modalities—Odometry and Network—can detect the anomaly
when one modality is blind to the attack. Even with the improved vector-based
reconstruction loss, the accuracy remains lower compared to configurations that
include network data. This result underscores the importance of incorporating
multiple modalities for comprehensive anomaly detection, as the system’s ability
to detect the attack relies on the combined strength of all available data sources.

Odometry and Network: The combination of Odometry and Network data
provides better detection accuracy than Lidar alone but is still less effective
than using all three modalities. The performance, however, significantly benefits
from the vector-based reconstruction loss, which mitigates the shortcomings of
excluding Lidar data.
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All Modalities: The highest accuracy is consistently achieved when all three
modalities are used. This underlines the value of a multimodal approach, where
the weaknesses of one modality can be compensated by the strengths of others.

6.6 Summary

The evaluation results clearly demonstrate the effectiveness of our proposed
anomaly detection system. The improved vector-based reconstruction loss sig-
nificantly enhances the system’s ability to detect anomalies across various con-
figurations, even when the training data is limited. The findings confirm that
utilizing multiple modalities—Lidar, Odometry, and Network—offers superior
detection capabilities, making the system robust and adaptable to different sce-
narios within autonomous Cyber-Physical Systems (CPS). The reduced impact
of training sample size on performance further underscores the practicality of
our approach in real-world applications, where data constraints are a common
challenge.

Fig. 9. Feature space visualization of the Spatiotemporal feature extractor trained on
Lidar, Odometry, and Network data.

Table 2. Evaluation of the performance of Feature Extractors trained on the Lidar,
Odometry, and Network data based on standard classification metrics.

Attacks Feature Extraction Stage
Lidar Odometry Network
Accuracy F1 ARR NPR Accuracy F1 ARR NPR Accuracy F1 ARR NPR

Attack 1 1.000 1.000 1.000 1.000 0.952 0.951 0.830 1.000 0.940 0.940 0.920 0.957
Attack 2 0.860 0.870 0.600 1.000 0.952 0.951 0.830 1.000 1.000 1.000 1.000 1.000
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Table 3. Comparison of results for (1) the standard reconstruction loss, (2) the
improved reconstruction loss (imRL), and (3) %50 reduced sample size for the training
stage with imRL. Similar improvements were seen in other evaluation metric used in
our evaluation such as F1 score, APR, and NPR

7 Conclusion and Future Work

In this paper, we presented a robust anomaly detection system, specifically
designed for autonomous robotic Cyber-Physical Systems. Leveraging a mul-
timodal approach that integrates a fusion of sensor and network traffic data
(Lidar, Odometry, and Network data), our system demonstrates robustness in
performance in detecting anomalies, even under sophisticated adversarial attacks
designed to evade detection by individual modalities. The introduction of a
vector-based reconstruction loss function significantly enhances the system’s
ability to detect subtle anomalies, thereby improving the overall accuracy and
reliability of the detection process.

Our experimental results, conducted on a real-world robotic platform, high-
light the system’s robustness, particularly when trained with limited data. The
performance remains strong even when the training sample size is reduced
by 50%, underscoring the practicality and generalizability of our approach in
real-world applications. The design and implementation of a Man-in-the-Middle
attack, specifically crafted to be invisible to the Lidar modality, further vali-
date the effectiveness of using multiple data sources to compensate for potential
vulnerabilities in individual sensors.

The success of our anomaly detector in maintaining high detection accuracy
across varying conditions and attack scenarios emphasizes the importance of a
holistic, multimodal approach to anomaly detection in autonomous CPS. Mov-
ing forward, we plan to integrate our anomaly detection system into real-time
decision-making processes within CPS, allowing for continuous learning from
live data and enhancing the system’s ability to respond to evolving threats. This
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integration will pave the way for more resilient and secure autonomous systems
capable of operating reliably in complex and dynamic environments.
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